Three Dimensional Configuration of A Large-Scale Coherent Vortex in a Turbulent Boundary Layer

Author(s):  
H. Makita ◽  
K. Sassa
2009 ◽  
Vol 622 ◽  
pp. 33-62 ◽  
Author(s):  
R. A. HUMBLE ◽  
G. E. ELSINGA ◽  
F. SCARANO ◽  
B. W. van OUDHEUSDEN

An experimental study is carried out to investigate the three-dimensional instantaneous structure of an incident shock wave/turbulent boundary layer interaction at Mach 2.1 using tomographic particle image velocimetry. Large-scale coherent motions within the incoming boundary layer are observed, in the form of three-dimensional streamwise-elongated regions of relatively low- and high-speed fluid, similar to what has been reported in other supersonic boundary layers. Three-dimensional vortical structures are found to be associated with the low-speed regions, in a way that can be explained by the hairpin packet model. The instantaneous reflected shock wave pattern is observed to conform to the low- and high-speed regions as they enter the interaction, and its organization may be qualitatively decomposed into streamwise translation and spanwise rippling patterns, in agreement with what has been observed in direct numerical simulations. The results are used to construct a conceptual model of the three-dimensional unsteady flow organization of the interaction.


2011 ◽  
Vol 673 ◽  
pp. 218-244 ◽  
Author(s):  
DAVID J. C. DENNIS ◽  
TIMOTHY B. NICKELS

Three-dimensional (3D) measurements of a turbulent boundary layer have been made using high-speed particle image velocimetry (PIV) coupled with Taylor's hypothesis, with the objective of characterising the very long streamwise structures that have been observed previously. The measurements show the 3D character of both low- and high-speed structures over very long volumes. The statistics of these structures are considered, as is their relationship to the important turbulence quantities. In particular, the length of the structures and their wall-normal extent have been considered and their relationship to the other components of the velocity fluctuations and the instantaneous stress.


2011 ◽  
Vol 673 ◽  
pp. 80-120 ◽  
Author(s):  
JAE HWA LEE ◽  
HYUNG JIN SUNG

Direct numerical simulation of a turbulent boundary layer was performed to investigate the spatially coherent structures associated with very-large-scale motions (VLSMs). The Reynolds number was varied in the range Reθ = 570–2560. The main simulation was conducted by using a computational box greater than 50δo in the streamwise domain, where δo is the boundary layer thickness at the inlet, and inflow data was obtained from a separate inflow simulation based on Lund's method. Inspection of the three-dimensional instantaneous fields showed that groups of hairpin vortices are coherently arranged in the streamwise direction and that these groups create significantly elongated low- and high-momentum regions with large amounts of Reynolds shear stress. Adjacent packet-type structures combine to form the VLSMs; this formation process is attributed to continuous stretching of the hairpins coupled with lifting-up and backward curling of the vortices. The growth of the spanwise scale of the hairpin packets occurs continuously, so it increases rapidly to double that of the original width of the packets. We employed the modified feature extraction algorithm developed by Ganapathisubramani, Longmire & Marusic (J. Fluid Mech., vol. 478, 2003, p. 35) to identify the properties of the VLSMs of hairpin vortices. In the log layer, patches with the length greater than 3δ–4δ account for more than 40% of all the patches and these VLSMs contribute approximately 45% of the total Reynolds shear stress included in all the patches. The VLSMs have a statistical streamwise coherence of the order of ~6δ; the spatial organization and coherence decrease away from the wall, but the spanwise width increases monotonically with the wall-normal distance. Finally, the application of linear stochastic estimation demonstrated the presence of packet organization in the form of a train of packets in the log layer.


2018 ◽  
Vol 859 ◽  
pp. 543-565 ◽  
Author(s):  
Kevin Kevin ◽  
Jason Monty ◽  
Nicholas Hutchins

We investigate the behaviour of large-scale coherent structures in a spanwise-heterogeneous turbulent boundary layer, using particle image velocimetry on multiple orthogonal planes. The statistical three-dimensionality is imposed by a herringbone riblet surface, although the key results presented here will be common to many cases of wall turbulence with embedded secondary flows in the form of mean streamwise vortices. Instantaneous velocity fields in the logarithmic layer reveal elongated low-momentum streaks located over the upwash-flow region, where their spanwise spacing is forced by the $2\unicode[STIX]{x1D6FF}$ periodicity of the herringbone pattern. These streaks largely resemble the turbulence structures that occur naturally (and randomly located) in spanwise-homogeneous smooth-/rough-wall boundary layers, although here they are directly formed by the roughness pattern. In the far outer region, the large spanwise spacing permits the streaks to aggressively meander. The mean secondary flows are the time-averaged artefact of the unsteady and spanwise asymmetric large-scale roll modes that accompany these meandering streaks. Interestingly, this meandering, or instability, gives rise to a pronounced streamwise periodicity (i.e. an alternating coherent pattern) in the spatial statistics, at wavelengths of approximately 4.5$\unicode[STIX]{x1D6FF}$. Overall, the observed behaviours largely resemble the streak-instability model that has been proposed for the buffer region, only here at a much larger scale and at a forced spanwise spacing. This observation further confirms recent observations that such features may occur at an entire hierarchy of scales throughout the turbulent boundary layer.


1984 ◽  
Vol 143 ◽  
pp. 153-172 ◽  
Author(s):  
Qing-Ding Wei ◽  
Hiroshi Sato

A wind-tunnel investigation was made of the mechanism of separation of a two-dimensional turbulent boundary layer on a convex wall. The flow field was observed visually by using a large number of smoke wires arranged in various ways. Statistical quantities were obtained by newly developed direction-sensitive hot-wire probes and flow-direction meters. Smoke pictures show localized backflow spots in the separation region. They occur intermittently, grow downstream, merge with each other and eventually cover the whole flow field. Measurements of instantaneous flow direction show that velocity fluctuations in the separation region are strongly three-dimensional. The backflow factor, which is defined as the fraction of time of occurrence of backflow, is used for the quantitative description of the separation region. The role of large-scale ordered motions in the turbulent separation was investigated by use of the conditional sample and average technique. It was confirmed that a localized backflow is initiated by a large-scale low-speed lump of fluid which travels downstream.


Sign in / Sign up

Export Citation Format

Share Document