coherent vortex
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 40)

H-INDEX

25
(FIVE YEARS 5)

2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Clemens Schwarz ◽  
Andrew Bodling ◽  
C. Christian Wolf ◽  
Robert Brinkema ◽  
Mark Potsdam ◽  
...  

AbstractThe blade tip vortex system is a crucial feature in the wake of helicopter rotors, and its correct prediction represents a major challenge in the numerical simulation of rotor flows. A common phenomenon in modern high-fidelity CFD simulations is the breakdown of the primary vortex system in hover due to secondary vortex braids. Since they are strongly influenced by the numerical settings, the degree to which these secondary vortex structures actually physically occur is still discussed and needs experimental validation. In the current work, the development of secondary vortex structures in the wake of a two-bladed rotor in hover conditions was investigated by combining stereoscopic particle image velocimetry measurements in different measurement planes and high-fidelity simulations. Secondary vortex structures were detected and quantified at different axial locations in the wake by applying an identical scheme to the measured and simulated velocity data. In agreement, it was found that the number of secondary vortices is maximum at a distance of $$0.8\,R$$ 0.8 R below the rotor. The more intense secondary vortex structures were quantitatively well captured in the simulation, whereas in the experiment a larger number of weaker vortices were detected. No distinct preferential direction of rotation was found for the secondary vortices, but they tended to develop in vortex pairs with alternating sense of rotation. A clustered occurrence of secondary vortices was observed close to the primary tip vortices, where the rolled-up blade shear layer breaks down into coherent vortex structures. Graphical abstract


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 512
Author(s):  
Jiao Wang ◽  
Mingjun Wang ◽  
Sichen Lei ◽  
Zhenkun Tan ◽  
Chenbai Wang ◽  
...  

Partially coherent optical vortices have been applicated widely to reduce the influence of atmospheric turbulence, especially for free-space optical (FSO) communication. Furthermore, the beam array is an effective way to increase the power of the light source, and can increase the propagation distance of the FSO communication system. Herein, we innovatively report evolution properties of the radial phased-locked partially coherent vortex (RPLPCV) beam array in non-Kolmogorov turbulence. The analytical expressions for the cross-spectral density and the average intensity of an RPLPCV beam array propagated through non-Kolmogorov turbulence are obtained. The numerical results reveal that the intensity distribution of the RPLPCV array propagated in the non-Kolmogorov turbulence is gradually converted to a standard Gaussian distribution. In addition, the larger the radial radius, radial number and waist radius are, the smaller the coherence length is. Moreover, the longer the wavelength is, the shorter the propagation distance required for the intensity distribution of the RPLPCV beam array to be converted into a Gaussian distribution in the non-Kolmogorov turbulence. The research in this paper provides a theoretical reference for the selection of light sources and the suppression of turbulence effects in wireless optical communication.


2021 ◽  
Author(s):  
Leixin Liu ◽  
Wenwei Liu ◽  
Fei Wang ◽  
Hua Cheng ◽  
Duk-Yong Choi ◽  
...  

Abstract Coherence, like amplitude, polarization and phase, is a fundamental characteristic of the light fields and is dominated by the statistical optical property. Generally, accurate coherence manipulation is challenging since coherence as a statistical quantity requires the combination of various bulky optical components and fast tuning of optical media. Spatial coherence as another pivotal optical dimension still has not been significantly manipulated on the photonic platform. Here, we theoretically and experimentally realize accurate manipulation of the spatial coherence of light fields by loading a temporal random phase distribution onto the wave-front on the statistical photonic platform. By quantitatively manipulating the statistical photonic properties, we can successfully achieve the partially coherent light with the pre-defined degree of coherence and continuously modulate it from fully coherent to incoherent. This design strategy can also be easily extended to manipulate the spatial coherence of other special beams such as partially coherent vortex beam generations. Our approach provides straightforward rules to manipulate the coherence of the light fields and paves the way for applications of partially coherent beams in information encryption, ghost imaging, and information transmission in turbulent media.


Author(s):  
Sergey Voronkov ◽  
Pavel Safronov ◽  
Alexander Dementiev ◽  
Olga Frolova ◽  
Tatiana Bugaeva

The problem of the emergence of turbulence is one of the unsolved problems of physics and technology of the 20th century. It is noted that in order to understand the emergence of turbulence in a viscous heat-conducting gas, it is necessary to take into account the compressibility of the medium. A definition of turbulence in a viscous heat-conducting gas is given, which is a cyclically repeating process of the emergence and decay of coherent vortex structures described by a vector wave equation. The decay of vortex structures is accompanied by an explosive, asymptotic increase in pressure pulsations, which triggers a new cycle of turbulence generation. The emergence and decay of coherent vortex structures in the boundary layer on a plate and in a round jet is considered.


Author(s):  
V.V. Vyshinsky ◽  
K.T. Zoan

The paper introduces an engineering method for assessing the aerodynamic effect of disturbed atmosphere on an aircraft. As a source of vortex structures, we can consider vortex wind wakes that arise when the atmospheric wind flows around the landscape, large structures, moving or stationary aircraft-carrying platforms, vortex wakes behind aircraft, etc. In this study, we consider the situation when a light transport aircraft and an aircraft of the MC-21 type get into the vortex wake behind the super-heavy aircraft A-380 when flying along the glide path. A coherent vortex structure behind the A-380 is formed by the grid method within the framework of the boundary value problem for the Reynolds-averaged Navier —Stokes equations. The evolution and stochastics of the far wake are carried out using the author’s computer code written in the MATLAB system, within the framework of discrete vortices with a Rankine core. The assessment of the increment of forces and moments from the effect of the vortex system on the aircraft was carried out using the panel method.


Optik ◽  
2021 ◽  
pp. 167361
Author(s):  
Xin Guo ◽  
Chen Yang ◽  
Meiling Duan ◽  
Miaojun Guo ◽  
Jing Wang ◽  
...  

2021 ◽  
Author(s):  
Lian Gan ◽  
Peter Dewhurst ◽  
Louise Coats ◽  
Jehill Parikh ◽  
Kieren Hollingsworth

Sign in / Sign up

Export Citation Format

Share Document