flow region
Recently Published Documents


TOTAL DOCUMENTS

847
(FIVE YEARS 157)

H-INDEX

45
(FIVE YEARS 5)

Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Iosif Moulinos ◽  
Christos Manopoulos ◽  
Sokrates Tsangaris

The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.


SPE Journal ◽  
2022 ◽  
pp. 1-12
Author(s):  
Quanshu Zeng ◽  
Zhiming Wang ◽  
Jinchao Wang ◽  
Qiqi Wanyan ◽  
Guosheng Ding ◽  
...  

Summary The leaching of a salt cavern will trigger a series of rock-fluid interactions, including salt rock dissolution, cavity expansion, and brine transport caused by convection, turbulence, and diffusion effects. These interactions have influences on one another. The primary objectives of this study include developing a 3D multiphysical coupled model for horizontal salt cavern leaching and quantifying these interactions. The species transport equation and standard κ-ε equation were combined to describe the brine transport dynamics within the cavity. Based on the velocity and concentration distribution characteristics predicted, the interface movement equation implemented with mesh deformation techniques was applied to describe the cavity expansion. Next, the Volgograd cavern monitored data were collected for model validation. The predicted results are consistent with the field data. The average relative errors are 11.0% for brine displacing concentration and 4.5% for cavity volume. The results suggest that the cavity can be divided into three regions, including the main flow region, circulation region, and reflux region. The results also suggest that the brine concentration distribution is relatively uniform. With the dissolution threshold angle and anisotropic dissolution rates considered, the resultant cavity cross section is crown top and cone bottom. The results also show that the cavity can be divided into dissolution and erosion sections according to its position relative to the injection point.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012025
Author(s):  
A. S. Lebedev ◽  
M. I. Sorokin ◽  
D. M. Markovich

Abstract The development of methods of active separation flow control is of great applied importance for many technical and engineering applications. Understanding the conditions for the flow separation from the surface of a bluff body is essential for the design of aircrafts, cars, hydro and gas turbines, bridges and buildings. Drag, acoustic noise, vibrations and active flow mixing depend drastically on the parameters of the vortex separation process. We investigated the possibility of reducing the longitudinal length of a reverse-flow region using the method of «synthetic jet» active separation flow control. The experiment was carried out on a compact straight-through wind channel with a 1-m long test section of a cross-section of 125x125 mm. The jet was placed at the rear stagnation point of a circular cylinder. The Reynolds number, based on the cylinder diameter and the free-stream velocity, was 5000 and the von Kármán street shedding frequency without the synthetic jet was equal to 64.8 Hz. For the first time, for such a set of parameters, we applied high speed PIV to demonstrate that the injection of the synthetic jet into the cylinder wake region leads to a significant reduction in the longitudinal length of the reverse-flow region.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012011
Author(s):  
K G Dobroselsky

Abstract Vortex flow structures in a turbulent wake behind a circular Teflon cylinder immersed in an incoming flow with a change in pressure for the Reynolds number Re = 2.2×105 have been experimentally studied using a two-dimensional image (2D-PIV) of particles in a closed-circuit water tunnel. The obtained results are presented in the form of time-averaged velocity fields, Reynolds stresses, and distributions of turbulent kinetic energy. The flow data showed that the size of the wake flow region, Reynolds stresses and turbulent kinetic energy change depending on the pressure in the flow. As a result of a 20% reduction in pressure, the size of the vortex zone in the wake increases by about 20%.


2021 ◽  
Author(s):  
Xiaonan Tang ◽  
Yutong Guan ◽  
Yuxiang Hu

Different types of vegetation widely exist in rivers and wetlands. The vegetation will affect the ecological environment and flow process, thus becoming increasingly significant in river engineering and aquatic environmental management. Previous research on vegetated flow is mainly to understand the flow structure of open channels with fully covered one-layer vegetation. However, vegetation often grows along a river bank and co-exists in different heights. The present paper presents experimental results about the flow characteristics of an open-channel with two sides covered by differently layered vegetation, focusing on the effect of vegetation on the velocity distribution and discharge. Two heights of dowels in 10 cm and 20 cm were used to simulate rigid vegetation and arranged in a linear form on both sides of a channel bed under emergent and fully submerged flow conditions. The velocity at different positions was obtained using ADV (Acoustic Doppler Velocimetry). Measured results demonstrate that there exists a shear layer between free-flow and vegetated zones, indicating that the flow transition occurs between fast-moving flow in the free zone and slowly obstructed flow in the vegetated zone and induces a high shear layer and transverse coherent vortices near the interface. Furthermore, compared with the emergent condition, the discharge through the free-flow region slightly decreases under full submerged conditions while the discharge in the vegetated region increases, indicating that the vegetation does not significantly change the discharge percentage in the free region. These findings on differently-layered vegetation would help riparian management practices to maintain healthy ecological and habitat zones.


Author(s):  
Yongqiang Pan ◽  
W. Zhou ◽  
Feng Jiajia ◽  
Xiaolei Yi ◽  
Chunqiang Xu ◽  
...  

Abstract Studying the vortex properties in high-Tc superconductors is crucial for understanding the high temperature superconducting mechanism. However, until now, only few vortex studies have been performed in 1111-type iron-based superconductors due to their smaller-sized single crystals. In this study, we have synthesized the millimeter-sized CaFe0.89Co0.11AsF single crystals by self-flux method. Three dimensional vortex nature was confirmed in the thermally activated flux flow region. Second magnetization peak was observed on the isothermal magnetization curves. Meanwhile, the dominated role of the normal point pinning was also confirmed. Finally, the various phase boundaries of the vortex were determined based on the analysis of the resistivity and magnetization data, and a complete vortex phase diagram of CaFe0.89Co0.11AsF single crystals was established.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012203
Author(s):  
E K Guseva ◽  
D A Nikulin ◽  
A K Travin ◽  
R Radespiel ◽  
P Scholz

Abstract Results are presented of a series of RANS computations aimed at creating a new experimental flow model of a curved turbulent wake evolving under adverse pressure gradient. In the course of the computations, key geometric parameters of the model (the angle of attack of a flat plate generating the wake and the shape and the angles of attack of liner foils creating the pressure gradient) were varied in a wide range. The purpose was to find the parameters ensuring desirable features of the flow, namely, a considerable wake curvature and its strong deceleration leading to formation of a large stagnation or even a reversal flow region, on the one hand, and no flow separation either from the flat plate or from the surfaces of the liner foils, on the other hand. As a result, the design satisfying all these demands has been found. This design will be implemented and studied in the framework of recently launched joint German-Russian project “Complex Wake Flows” which presents a continuation of an earlier similar project devoted to symmetric wakes.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012007
Author(s):  
D Yu Chernysh ◽  
D Krasnov ◽  
Yu B Kolesnikov ◽  
I A Belyaev

Abstract The subject of this study is the effect of the initial “swirling” of the flow by installing cylindrical elements in the initial flow region affected by strong magnetic field. In particular, various designs (longitudinal, transverse, and inclined arrangement with respect to the magnetic field) and the dimensions of the cylinders are considered. To create liquid metal systems that are more predictable and possibly more efficient from the point of view of thermal hydraulics, we experimentally studied the flow in a rectangular channel with dimensions of 56×16 mm. For the first time, it was found that the presence of an initial flow disturbance leads to significant changes in the flow at a significant length (700 mm).


2021 ◽  
Vol 2070 (1) ◽  
pp. 012230
Author(s):  
M. L.R. Chaitanya Lahari ◽  
P.H.V. Sesha Talpa Sai ◽  
K.V. Sharma ◽  
K.S. Narayanaswamy ◽  
P.Haseena Bee ◽  
...  

Abstract Convective and overall heat transfer coefficients of SiO2 nanofluid flowing in a concentric DTHE are determined experimentally. The tests are carried out in the 800<Re<1900 range using SiO2/22nm nanofluids prepared in 0.2, 0.6 and 1.0% volume concentrations in 30:70 ratio glycerol-water mixture base liquid. The thermal and physical properties of silica nanofluids are determined in the range of 20-80°C. Viscosity, thermal conductivity, and density of nanofluids increased with particle concentration whereas specific heat decreased. Thermal conductivity and specific heat of nanofluids increased with temperature while viscosity and density decreased. Heat transfer experiments are conducted using nanofluids at a bulk temperature of 35°C in a laminar developing flow region. Overall heat transfer coefficient and convective HTC of 1.0% silica nanofluids are increased by 21.2 and 36.3% compared to base liquid.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012164
Author(s):  
V D Zaitsev ◽  
S S Stafeev ◽  
V V Kotlyar

Abstract In this work, the focusing of a circularly polarized plane wave (wavelength 532 nm) was simulated by a lens with a numerical aperture NA = 0.95. The wave front was considered flat. When integrating according to the Richards-Wolf formulas, the semicircular aperture was set by limiting the azimuthal angle from 0 to π. It was shown that when focusing light with right and left circular polarization, the focal spot turns out to be elliptical - elongated along the y axis, and, depending on the direction of polarization, its center shifts by about 0.05 μm in different directions along the x axis. It was also shown that the reverse flow region is located near the focal spot (at a distance of 0.25 μm from the center). Depending on the direction of polarization, it is located either to the right or to the left of the focal spot. Thus, the polarization state of the incident radiation can be determined from the displacement of the spot in focus.


Sign in / Sign up

Export Citation Format

Share Document