Flame-Holding Behind a Wedge by Incident Shock Waves

Author(s):  
T. Fujimori ◽  
M. Murayama ◽  
J. Sato ◽  
H. Kobayashi ◽  
T. Niioka
Keyword(s):  
Author(s):  
T. Fujimori ◽  
M. Murayama ◽  
J. Sato ◽  
H. Kobayashi ◽  
S. Hasegawa ◽  
...  

2020 ◽  
Vol 23 (6) ◽  
pp. 931-935
Author(s):  
Xin Li ◽  
Hui-jun Tan ◽  
Yue Zhang ◽  
He-xia Huang ◽  
Yun-jie Guo ◽  
...  

2020 ◽  
Vol 10 (12) ◽  
pp. 4128
Author(s):  
Mahesh Thorat ◽  
Shiba Sahu ◽  
Viren Menezes ◽  
Amol Gokhale ◽  
Hamid Hosano

It is important to protect assets located within cavities vulnerable to incident shock waves generated by explosions. The aim of the present work is to explore if closed cell aluminum foams can mediate and attenuate incident shocks experienced by cavities. A small cavity of 9 mm diameter and 2 mm length was created within the steel end-wall of a shock tube and exposed to shocks, directly or after isolating by aluminum foam liners. Shock waves with incident pressure of 9–10 bar travelling at a velocity of 1000–1050 m/s were generated in the shock tube. Compared to the no-foam condition, the pressure induced in the cavity was either equal or lower, depending on whether the foam density was low (0.28 g/cc) or high (0.31 to 0.49 g/cc), respectively. Moreover, the rate of pressure rise, which was very high without and with the low density foam barrier, reduced substantially with increasing foam density. Foams deformed plastically under shock loading, with the extent of deformation decreasing with increasing foam density. Some interesting responses such as perforation of cell walls in the front side and densification in the far side of the foam were observed by a combination of scanning electron microscopy and X-ray microscopy. The present work conclusively shows that shocks in cavities within rigid walls can be attenuated by using foam liners of sufficiently high densities, which resist densification and extrusion into the cavities. Even such relatively high-density foams would be much lighter than fully dense materials capable of protecting cavities from shocks.


1971 ◽  
Vol 55 (9) ◽  
pp. 4425-4432 ◽  
Author(s):  
T. P. J. Izod ◽  
G. B. Kistiakowsky ◽  
S. Matsuda

1968 ◽  
Vol 72 (7) ◽  
pp. 2307-2310 ◽  
Author(s):  
Jay A. Blauer ◽  
Wayne C. Solomon

1969 ◽  
Vol 73 (8) ◽  
pp. 2683-2688 ◽  
Author(s):  
Jay A. Blauer ◽  
H. G. McMath ◽  
F. C. Jaye

Author(s):  
W. A. Woods

The paper first explains the importance of the reflection of shock waves in the design of certain chemical plant. The theory of the reflection of shock waves is also discussed in the first part of the paper. It is shown that when a shock wave travelling along a pipe containing stationary gas reaches the outlet end of the pipe there may be ( a) a reflected expansion wave, ( b) a reflected shock wave, ( c) a reflected sound wave, ( d) no reflected wave at all, ( e) a standing shock wave situated at the end of the pipe, depending upon the strength of the incident shock wave and the amount of blockage present at the outlet end of the pipe. The conditions for each kind of reflection are determined, and in the case of the reflected shock wave region the strengths and speeds of the reflected shock waves are established throughout the region and the results are presented graphically. In the second part of the paper the results are given of experiments carried out on a shock tube fitted with various kinds of deflector plates. The experiments were performed to study the reflection of shock waves from the deflector plates by measuring pressure/time indicator diagrams near the outlet end of the pipe. The indicator diagrams revealed the approximate pressure amplitudes of the incident and reflected shock waves and also the wave travel times for the shock waves. This information was used in conjunction with the charts given in the first part of the paper to establish the deflector geometry and spacing needed in order to avoid the occurrence of a reflected shock wave.


Sign in / Sign up

Export Citation Format

Share Document