Boundary Element Method for Two-Dimensional Shallow Water Acoustic Wave Propagation

Author(s):  
J. A. F. Santiago ◽  
L. C. Wrobel
2008 ◽  
Vol 16 (02) ◽  
pp. 177-198 ◽  
Author(s):  
J. ANTÓNIO ◽  
A. TADEU ◽  
P. AMADO MENDES

This paper models three-dimensional wave propagation around two-dimensional rigid acoustic screens, with minimal thickness (approaching zero), and placed in a fluid layer. Rigid or free boundaries are prescribed for the flat fluid surfaces. The problem is computed using the Traction Boundary Element Method (TBEM), which is appropriate for modeling thin-body inclusions, overcoming the difficulty posed by the conventional direct Boundary Element Method (BEM). The problem is solved as a summation of two-dimensional problems for different wave numbers along the direction for which the geometry does not vary. The source in each problem is a spatially sinusoidal harmonic line load. The influence of the horizontal boundaries of the fluid medium on the final wave field is computed analytically using appropriate 2.5D Green's functions for each model developed. Thus, only the boundary of the rigid acoustic screen needs to be discretized by boundary elements. The computations are performed in the frequency domain and are subsequently inverse Fourier transformed to obtain time domain results. Complex frequencies are used to avoid aliasing phenomena in the time domain results.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1080-1081
Author(s):  
Giuseppe Davi ◽  
Rosario M. A. Maretta ◽  
Alberto Milazzo

1997 ◽  
Author(s):  
E. Longatte ◽  
P. Lafon ◽  
S. Candel ◽  
E. Longatte ◽  
P. Lafon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document