The Phase Space Structure Around L 4 in the Restricted Three-Body Problem

Author(s):  
Zsolt Sándor ◽  
Bálint Érdi ◽  
Christos Efthymiopoulos
2016 ◽  
Vol 26 (02) ◽  
pp. 1650029
Author(s):  
Beena R. Gupta ◽  
Vinay Kumar

In this paper, we have considered Time-Frequency Analysis (TFA) and Poincaré Surface of Section (PSS) for the study of the phase space structure of nonlinear dynamical system. We have examined a sample of orbits taken in the framework of Circular Restricted Three-Body Problem (CRTBP). We have computed ridge-plots (i.e. time-frequency landscape) using the phase of the continuous wavelet transform. Clear visualization of resonance trappings and the transitions is an important feature of this method, which is presented using ridge-plots. The identification between periodic and quasi-periodic, chaotic sticky and nonsticky and regular and chaotic orbits are done in comparatively less time and with less computational effort. The spatial case of Circular Restricted Three-Body problem is considered to show the strength of Time-Frequency Analysis to higher dimensional systems. Also, with the help of ridge-plots, we can visualize the phenomenon of transient chaos.


1978 ◽  
Vol 41 ◽  
pp. 285-303
Author(s):  
Daniel Benest

AbstractIn the frame of the gravitational restricted three-body problem, we study by numerical simulation the retrograde satellites -and their stability-at large distance. In the circular plane case, the stable satellites mostly surround (in the phase-space X°-V°) the characteristic of a family of single-periodic orbits where this family is stable, and librates (in the physical space) around a curve which corresponds to the nearest (in the phase-space X°-V°) periodic orbit. An analytical analysis of this libration is made for Hill’s case. The beginning of the study of the three—dimensional orbits is presented.


2020 ◽  
Vol 493 (2) ◽  
pp. 1574-1586
Author(s):  
Qingyu Qu ◽  
Mingpei Lin ◽  
Ming Xu

ABSTRACT It is clarified that the parabolic/hyperbolic restricted three-body problem (PRTBP/HRTBP) can be adopted to provide a simple description of the dynamics of fly-by asteroids or the close encounters between different galaxies. For these reasons, PRTBP and HRTBP have been investigated for long intervals of time. However, they are quite different from the circular restricted three-body problem due to the time-dependent and non-periodic dynamics. The Lagrangian coherent structures (LCSs), as a useful tool to analyse the time-dependent dynamical system, could be applied to explain some mechanics of the PRTBP and HRTBP. In this paper, we verify the invariant manifolds on the boundary manifolds of PRTBP by analysing the LCSs in proper Poincaré sections, which shows that it works in such a non-periodic problem. One of the contributions is to investigate the LCSs in the complete phase space of PRTBP, and then some natural escape and capture trajectories from or to the two main bodies can be obtained in this way. Another contribution is to establish and study the dynamics of HRTBP and its boundary. The LCSs can be introduced into this system, reasonably, to work as the analogues of the invariant manifolds, and the similar natural escape and capture trajectories corresponding to the two main bodies can also be obtained in the complete phase space of HRTBP. As a typical technique applied to fluid, flows to identify transport barriers in the time-dependent system, the LCSs provide an effective way to determine the time-dependent analogues of invariant manifolds for the PRTBP/HRTBP.


2020 ◽  
Vol 501 (1) ◽  
pp. 1511-1519
Author(s):  
Junjie Luo ◽  
Weipeng Lin ◽  
Lili Yang

ABSTRACT Symplectic algorithms are widely used for long-term integration of astrophysical problems. However, this technique can only be easily constructed for separable Hamiltonian, as preserving the phase-space structure. Recently, for inseparable Hamiltonian, the fourth-order extended phase-space explicit symplectic-like methods have been developed by using the Yoshida’s triple product with a mid-point map, where the algorithm is more effective, stable and also more accurate, compared with the sequent permutations of momenta and position coordinates, especially for some chaotic case. However, it has been found that, for the cases such as with chaotic orbits of spinning compact binary or circular restricted three-body system, it may cause secular drift in energy error and even more the computation break down. To solve this problem, we have made further improvement on the mid-point map with a momentum-scaling correction, which turns out to behave more stably in long-term evolution and have smaller energy error than previous methods. In particular, it could obtain a comparable phase-space distance as computing from the eighth-order Runge–Kutta method with the same time-step.


Sign in / Sign up

Export Citation Format

Share Document