Explicit symplectic-like integration with corrected map for inseparable Hamiltonian

2020 ◽  
Vol 501 (1) ◽  
pp. 1511-1519
Author(s):  
Junjie Luo ◽  
Weipeng Lin ◽  
Lili Yang

ABSTRACT Symplectic algorithms are widely used for long-term integration of astrophysical problems. However, this technique can only be easily constructed for separable Hamiltonian, as preserving the phase-space structure. Recently, for inseparable Hamiltonian, the fourth-order extended phase-space explicit symplectic-like methods have been developed by using the Yoshida’s triple product with a mid-point map, where the algorithm is more effective, stable and also more accurate, compared with the sequent permutations of momenta and position coordinates, especially for some chaotic case. However, it has been found that, for the cases such as with chaotic orbits of spinning compact binary or circular restricted three-body system, it may cause secular drift in energy error and even more the computation break down. To solve this problem, we have made further improvement on the mid-point map with a momentum-scaling correction, which turns out to behave more stably in long-term evolution and have smaller energy error than previous methods. In particular, it could obtain a comparable phase-space distance as computing from the eighth-order Runge–Kutta method with the same time-step.

2020 ◽  
Vol 493 (2) ◽  
pp. 1913-1925
Author(s):  
David M Hernandez ◽  
Sam Hadden ◽  
Junichiro Makino

ABSTRACT N-body integrations are used to model a wide range of astrophysical dynamics, but they suffer from errors which make their orbits diverge exponentially in time from the correct orbits. Over long time-scales, their reliability needs to be established. We address this reliability by running a three-body planetary system over about 200 e-folding times. Using nearby initial conditions, we can construct statistics of the long-term phase-space structure and compare to rough estimates of resonant widths of the system. We compared statistics for a wide range of numerical methods, including a Runge–Kutta method, Wisdom–Holman method, symplectic corrector methods, and a method by Laskar and Robutel. ‘Improving’ an integrator did not increase the phase-space accuracy, but simply increasing the number of initial conditions did. In fact, the statistics of a higher order symplectic corrector method were inconsistent with the other methods in one test.


2016 ◽  
Vol 26 (02) ◽  
pp. 1650029
Author(s):  
Beena R. Gupta ◽  
Vinay Kumar

In this paper, we have considered Time-Frequency Analysis (TFA) and Poincaré Surface of Section (PSS) for the study of the phase space structure of nonlinear dynamical system. We have examined a sample of orbits taken in the framework of Circular Restricted Three-Body Problem (CRTBP). We have computed ridge-plots (i.e. time-frequency landscape) using the phase of the continuous wavelet transform. Clear visualization of resonance trappings and the transitions is an important feature of this method, which is presented using ridge-plots. The identification between periodic and quasi-periodic, chaotic sticky and nonsticky and regular and chaotic orbits are done in comparatively less time and with less computational effort. The spatial case of Circular Restricted Three-Body problem is considered to show the strength of Time-Frequency Analysis to higher dimensional systems. Also, with the help of ridge-plots, we can visualize the phenomenon of transient chaos.


2009 ◽  
Vol 324 (1) ◽  
pp. 53-72 ◽  
Author(s):  
A.B. Klimov ◽  
J.L. Romero ◽  
G. Björk ◽  
L.L. Sánchez-Soto

2010 ◽  
Vol 374 (43) ◽  
pp. 4385-4392 ◽  
Author(s):  
Fernando Nicacio ◽  
Raphael N.P. Maia ◽  
Fabricio Toscano ◽  
Raúl O. Vallejos

Sign in / Sign up

Export Citation Format

Share Document