scholarly journals Correction to: Landscape Planning with Ecosystem Services

Author(s):  
Christina von Haaren ◽  
Andrew A. Lovett ◽  
Christian Albert
Author(s):  
Marise Barreiros Horta ◽  
Maria Inês Cabral ◽  
Iva Pires ◽  
Laura Salles Bachi ◽  
Ana Luz ◽  
...  

By integrating social, ecological, and economic perspectives, the assessment of ecosystem services (ES) provides valuable information for better targeting landscape planning and governance. This chapter summarizes different participatory approaches for assessing ES in urban areas of three countries. In Belo Horizonte (Brazil), a conceptual framework for the vacant lots ES assessment is presented as an attempt to integrate landscape, social, and political dimensions. In Leipzig (Germany), a combination of site surveys, interviews, and remote sensing provides a valuable data set that fostered a comparative study between two forms of urban gardening. In Lisbon (Portugal), the study is based on interviews that offer a social insight into the horticultural parks situation, which in turn demands a better dialogue with the municipality. In general, the studies demonstrate the potential benefits of utilizing the ES assessment approaches on urban landscapes, especially for better understanding the interactions between people and nature in urban sites.


2012 ◽  
Vol 28 (6) ◽  
pp. 1175-1192 ◽  
Author(s):  
K. Bruce Jones ◽  
Giovanni Zurlini ◽  
Felix Kienast ◽  
Irene Petrosillo ◽  
Thomas Edwards ◽  
...  

Author(s):  
Yan Zhang ◽  
Yanfang Liu ◽  
Jiawei Pan ◽  
Yang Zhang ◽  
Dianfeng Liu ◽  
...  

Ecosystem services (ESs) are facing challenges from urbanization processes globally. Exploring how ESs respond to urbanization provides valuable information for ecological protection and urban landscape planning. Previous studies mainly focused on the global and single-scaled responses of ESs but ignored the spatially heterogenous and scale-dependent characteristics of these responses. This study chose Wuhan City in China as the study area to explore the spatially varying and scale-dependent responses of ESs, i.e., grain productivity, carbon sequestration, biodiversity potential and erosion prevention, to urbanization using geographically weighted regression (GWR). The results showed that the responses of ESs were spatially nonstationary evidenced by a set of local parameter estimates in GWR models, and scale-dependent indicated by two kinds of scale effects: effect of different bandwidths and effect of grid scales. The stationary index of GWR declined rapidly as the bandwidth increased until reaching to a distance threshold. Moreover, GWR outperformed ordinary least square at both grid scales (i.e., 5 km and 10 km scales) and behaved better at finer scale. The spatially non-stationary and scale-dependent responses of ESs to urbanization are expected to provide beneficial guidance for ecologically friendly urban planning.


2020 ◽  
Author(s):  
Filippo Carlo Pavesi ◽  
Stefano Barontini ◽  
Michele Pezzagno

<p>Data on natural disasters shows that cities worldwide are increasingly exposed to the risk of negative consequences. Storms and floods are among the main causes of casualties and economic losses. Moreover climatic and anthropogenic changes, urbanization and other land use transformation may contribute to increase hydrogeological hazard and risk, both in mountain valleys and in floodplain areas. On the other hand well managed soil may offer many water—regulating ecosystem services. Given that the hydrological and hydraulic dynamics commonly involve a great area, which is also upstream and surrounding the city, therefore a paradigm shift both in urban and land planning is needed, in order to integrate hazard perception and risk culture in plans. This integration also requires practices of soil conservation.</p><p>Literature underlines that, in order to achieve the transition to resilient communities, it is necessary (a) to reduce soil sealing, (b) to improve the benefits of ecosystem services as part of the plan strategies, (c) to enhance the key role that landscape planning can play in environmental protection. However, in most of the current urban and spatial plans in Italy these strategic guidelines are still ignored.</p><p>In order to address these critical issues we propose a method to classify rural areas which considers both landscape and hydrological peculiarities, in order to identify, at the regional scale, the most suitable areas to plan and design the landscape. We therefore propose to identify such a kind of landscape with the definition of a “sponge land(scape)”, which aims at extending the affirmed concept of “sponge cities” to rural areas. This approach to land management may contribute to the mitigation of hydrogeological hazard and risk, by means of preserving the regulating soil ecosystem services. At the same time it will improve both the resilience level of urban areas and the ecosystems living conditions.</p><p>The method is tested in Italy, where, according to the “Report on hazard and risk indicators about landslides and floods in Italy” (ISPRA, 2018) more than ninety percent of Italian municipalities are exposed to the hydrogeological risk. The collaboration between researchers belonging to the disciplines of spatial planning (i.e. town and regional planning) and soil hydrology was considered strategic. In particular, it allows to take advantage of specialized hydrology geo-datasets into spatial planning, which are usually not taken into account. As a first step, Hydrological Soil Groups were considered in the planning procedure. Data integration in GIS made it possible to create new maps which allow priority area to emerge for ”sponge landscaping actions”, such as the adoption of Nature Based Solution or Natural Water Retention Measures. These contribute both to the mitigation of hydraulic risk and to the maximization of other complementary ecosystem services (e.g. biodiversity preservation, climate change adaptation and mitigation, erosion/sediment control).</p>


Sign in / Sign up

Export Citation Format

Share Document