Learning Theories in Science Education

2017 ◽  
pp. 93-103 ◽  
Author(s):  
Sudhakar Agarkar ◽  
Richard Brock
2008 ◽  
pp. 14-29
Author(s):  
Kevin F. Downing ◽  
Jennifer K. Holtz

The practical application of theory, or praxis, in science education is arguably less straightforward today than it has been in preceding generations. While formal education and learning theories have been promulgated for close to 100 years, the changing disposition and balance of academia, and the consequent dissemination of questionable and unverifiable social theories, have led to a more ambiguous discussion and application of au courant learning theories to science education. Much of what the authors consider the detrimental entanglement in academia of definitions and educational theories about science occurs at the confluence of different professional attitudes and motivation. Scientists are generally complacent in terms of championing and defending their own core philosophy and epistemology, and a scientist’s professional rewards and efforts rarely consist of debunking critics in the so-called other ‘ways of knowing’ (see the Science Wars website and the Sokal Affair for a droll exception at http://members.tripod.com/ScienceWars/). The defense of scientific reasoning is not what scientists focus on by training; thus, this is an area that almost certainly needs more systematic attention and treatment in science curricula. By contrast, science’s detractors in the humanities, social sciences and even education, find professional incentive and marketable topic in assailing the science colossus. Most notably, postmodernism with its socially relativistic and radical constructivist theories, replete with the denial of objective truth, have attempted to undermine science, or as Fishman (1996) noted, are attempting to put science on an “indefinite furlough” (p. 95). Like it or not, the science community is at war with nihilistic ideologies and one of the battle grounds is pedagogy, a deliberation that extends to online science learning environments.


2013 ◽  
pp. 1068-1093
Author(s):  
G. Barbara Demo ◽  
Michele Moro ◽  
Alfredo Pina ◽  
Javier Arlegui

In this chapter, the authors describe an inquiry-based science education (IBSE) theoretical framework as it was applied to robotics activities carried out in European K-12 classrooms during the last six years. Interactions between IBSE, problem-based learning, constructivist/constructionist learning theories, and technology are discussed. Example activities demonstrate that educational robotics capitalizes on the digital curiosity of young people. This leads to concrete experiences in STEM content areas and spreads computational thinking to all school types and levels. Cooperation among different stakeholders (students, teachers, scientific and disseminating institutions, families) is emphasized in order to exploit in and out of the classroom school resources, competencies, and achievements and for implementing peer-to-peer education among students and teachers in the same class/school or from different schools.


Author(s):  
G. Barbara Demo ◽  
Michele Moro ◽  
Alfredo Pina ◽  
Javier Arlegui

In this chapter, the authors describe an inquiry-based science education (IBSE) theoretical framework as it was applied to robotics activities carried out in European K-12 classrooms during the last six years. Interactions between IBSE, problem-based learning, constructivist/constructionist learning theories, and technology are discussed. Example activities demonstrate that educational robotics capitalizes on the digital curiosity of young people. This leads to concrete experiences in STEM content areas and spreads computational thinking to all school types and levels. Cooperation among different stakeholders (students, teachers, scientific and disseminating institutions, families) is emphasized in order to exploit in and out of the classroom school resources, competencies, and achievements and for implementing peer-to-peer education among students and teachers in the same class/school or from different schools.


2018 ◽  
Vol 60 (2) ◽  
pp. 79-90
Author(s):  
Andreas Zendler

Abstract Answers to the questions of which instructional methods are suitable for school, what instructional methods should be applied in teaching individual subjects and how instructional methods support the act of learning represent challenges to general education and education in individual subjects. This article focuses on empirical examinations of instructional methods for computer science education supporting knowledge processes in the act of learning and their integration into the context of significant learning theories. The results of this article show that certain instructional methods are especially predestined for computer science education. They can also be attributed to behavioristic, cognitivist and constructivist learning theories; they are thereby localized and can profit from the empirical findings of the learning theories, especially in practical use on teaching computer science.


Sign in / Sign up

Export Citation Format

Share Document