Cryptanalysis of an Asymmetric Image Cryptosystem Based on Synchronized Unified Chaotic System and CNN

Author(s):  
Musheer Ahmad ◽  
Faiyaz Ahmad ◽  
Syed Ashar Javed
2021 ◽  
Vol 31 (01) ◽  
pp. 2150013
Author(s):  
Qiang Lai

This article presents a unified four-dimensional autonomous chaotic system with various coexisting attractors. The dynamic behaviors of the system are determined by its special nonlinearities with multiple zeros. Two cases of nonlinearities with sine function of the system are discussed. The symmetrical coexisting attractors, asymmetrical coexisting attractors and infinitely many coexisting attractors in the system are numerically demonstrated. This shows that such a system has an ability to produce abundant coexisting attractors, depending on the number of equilibrium points determined by nonlinearities.


2015 ◽  
Vol 25 (09) ◽  
pp. 1550122 ◽  
Author(s):  
Jaume Llibre ◽  
Ana Rodrigues

A one-parameter family of differential systems that bridges the gap between the Lorenz and the Chen systems was proposed by Lu, Chen, Cheng and Celikovsy. The goal of this paper is to analyze what we can say using analytic tools about the dynamics of this one-parameter family of differential systems. We shall describe its global dynamics at infinity, and for two special values of the parameter a we can also describe the global dynamics in the whole ℝ3using the invariant algebraic surfaces of the family. Additionally we characterize the Hopf bifurcations of this family.


2021 ◽  
Vol 15 (4) ◽  
pp. 118-131
Author(s):  
Sadiq A. Mehdi

In this paper, a novel four-dimensional chaotic system has been created, which has characteristics such as high sensitivity to the initial conditions and parameters. It also has two a positive Lyapunov exponents. This means the system is hyper chaotic. In addition, a new algorithm was suggested based on which they constructed an image cryptosystem. In the permutation stage, the pixel positions are scrambled via a chaotic sequence sorting. In the substitution stage, pixel values are mixed with a pseudorandom sequence generated from the 4D chaotic system using XOR operation. A simulation has been conducted to evaluate the algorithm, using the standardized tests such as information entropy, histogram, number of pixel change rate, unified average change intensity, and key space. Experimental results and performance analyses demonstrate that the proposed encryption algorithm achieves high security and efficiency.


Sign in / Sign up

Export Citation Format

Share Document