unified chaotic system
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 11)

H-INDEX

21
(FIVE YEARS 1)

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huijian Zhu ◽  
Lijie Li

In this paper, the influence of delayed feedback on the unified chaotic system from the Sprott C system and Yang system is studied. The Hopf bifurcation and dynamic behavior of the system are fully studied by using the central manifold theorem and bifurcation theory. The explicit formula, bifurcation direction, and stability of the periodic solution of bifurcation are given correspondingly. The Hopf bifurcation diagram and chaotic phenomenon are also analyzed by numerical simulation to prove the correctness of the theory. It shows that this delay control can only be applied to the hidden chaos with two stable equilibria.


2021 ◽  
Vol 31 (01) ◽  
pp. 2150013
Author(s):  
Qiang Lai

This article presents a unified four-dimensional autonomous chaotic system with various coexisting attractors. The dynamic behaviors of the system are determined by its special nonlinearities with multiple zeros. Two cases of nonlinearities with sine function of the system are discussed. The symmetrical coexisting attractors, asymmetrical coexisting attractors and infinitely many coexisting attractors in the system are numerically demonstrated. This shows that such a system has an ability to produce abundant coexisting attractors, depending on the number of equilibrium points determined by nonlinearities.


Author(s):  
Engin Can ◽  
Uğur Erkin Kocamaz ◽  
Yılmaz Uyaroğlu

2020 ◽  
Vol 5 (5) ◽  
pp. 4345-4356
Author(s):  
Hongli An ◽  
◽  
Dali Feng ◽  
Li Sun ◽  
Haixing Zhu ◽  
...  

Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1077 ◽  
Author(s):  
Li ◽  
Zhang ◽  
Yang

The traditional method of solving fractional chaotic system has the problem of low precision and is computationally cumbersome. In this paper, different fractional-order calculus solutions, the Adams prediction–correction method, the Adomian decomposition method and the improved Adomian decomposition method, are applied to the numerical analysis of the fractional-order unified chaotic system. The result shows that different methods have higher precision, smaller computational complexity, and shorter running time, in which the improved Adomian decomposition method works best. Then, based on the fractional-order chaotic circuit design theory, the circuit diagram of fractional-order unified chaotic system is designed. The result shows that the circuit simulation diagram of fractional-order unified chaotic system is basically consistent with the phase space diagram obtained from the numerical solution of the system, which verifies the existence of the fractional-order unified chaotic system of 0.9-order. Finally, the active control method is used to control and synchronize in the fractional-order unified chaotic system, and the experiment result shows that the method can achieve synchronization in a shorter time and has a better control performance.


2019 ◽  
Vol 30 (11) ◽  
pp. 1950086 ◽  
Author(s):  
Pei Zhang ◽  
Renyu Yang ◽  
Renhuan Yang ◽  
Gong Ren ◽  
Xiuzeng Yang ◽  
...  

The essence of parameter estimation for fractional-order chaotic systems is a multi-dimensional parameter optimization problem, which is of great significance for implementing fractional-order chaos control and synchronization. Aiming at the parameter estimation problem of fractional-order chaotic systems, an improved algorithm based on bird swarm algorithm is proposed. The proposed algorithm further studies the social behavior of the original bird swarm algorithm and optimizes the foraging behavior in the original bird swarm algorithm. This method is applied to parameter estimation of fractional-order chaotic systems. Fractional-order unified chaotic system and fractional-order Lorenz system are selected as two examples for parameter estimation systems. Numerical simulation shows that the algorithm has better convergence accuracy, convergence speed and universality than bird swarm algorithm, artificial bee colony algorithm, particle swarm optimization and genetic algorithm.


Sign in / Sign up

Export Citation Format

Share Document