algebraic surfaces
Recently Published Documents


TOTAL DOCUMENTS

668
(FIVE YEARS 64)

H-INDEX

36
(FIVE YEARS 1)

Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Erhan Güler ◽  
Ömer Kişi

We introduce the real minimal surfaces family by using the Weierstrass data (ζ−m,ζm) for ζ∈C, m∈Z≥2, then compute the irreducible algebraic surfaces of the surfaces family in three-dimensional Euclidean space E3. In addition, we propose that family has a degree number (resp., class number) 2m(m+1) in the cartesian coordinates x,y,z (resp., in the inhomogeneous tangential coordinates a,b,c).


Axioms ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Erhan Güler

We consider the Enneper family of real maximal surfaces via Weierstrass data (1,ζm) for ζ∈C, m∈Z≥1. We obtain the irreducible surfaces of the family in the three dimensional Minkowski space E2,1. Moreover, we propose that the family has degree (2m+1)2 (resp., class 2m(2m+1)) in the cartesian coordinates x,y,z (resp., in the inhomogeneous tangential coordinates a,b,c).


Author(s):  
Jacek Bochnak ◽  
Wojciech Kucharz

AbstractLet $$f :X \rightarrow \mathbb {R}$$ f : X → R be a function defined on a nonsingular real algebraic set X of dimension at least 3. We prove that f is an analytic (resp. a Nash) function whenever the restriction $$f|_{S}$$ f | S is an analytic (resp. a Nash) function for every nonsingular algebraic surface $$S \subset X$$ S ⊂ X whose each connected component is homeomorphic to the unit 2-sphere. Furthermore, the surfaces S can be replaced by compact nonsingular algebraic curves in X, provided that dim$$X \ge 2$$ X ≥ 2 and f is of class $$\mathcal {C}^{\infty }$$ C ∞ .


2021 ◽  
Vol 20 ◽  
pp. 581-596
Author(s):  
Lionel Garnier ◽  
Lucie Druoton ◽  
Jean-Paul Bécar ◽  
Laurent Fuchs ◽  
Géraldine Morin

Dupin cyclides are algebraic surfaces introduced for the first time in 1822 by the French mathematician Pierre-Charles Dupin. A Dupin cyclide can be defined as the envelope of a one-parameter family of oriented spheres, in two different ways. R. Martin is the first author who thought to use these surfaces in CAD/CAM and geometric modeling. The Minkowski-Lorentz space is a generalization of the space-time used in Einstein’s theory, equipped of the non-degenerate indefinite quadratic form QM(u) = x^2 + y^2 + z^2 - c^2 t^2where (x, y, z) are the spacial components of the vector u and t is the time component of u and c is the constant of the speed of light. In this Minkowski-Lorentz space, a Dupin cyclide is the union of two conics on the unit pseudo-hypersphere, called the space of spheres, and a singular point of a Dupin cyclide is represented by an isotropic vector. Then, we model Dupin cyclides using rational quadratic Bézier curves with mass points. The subdivisions of a surface i.e. a Dupin cyclide, is equivalent to subdivide two curves of degree 2, independently, whereas in the 3D Euclidean space ε3, the same work implies the subdivision of a rational quadratic Bézier surface and resolutions of systems of three linear equations. The first part of this work is to consider ring Dupin cyclides because the conics are circles which look like ellipses.


Author(s):  
Niclas Kruff ◽  
Jaume Llibre ◽  
Chara Pantazi ◽  
Sebastian Walcher

AbstractWe discuss criteria for the nonexistence, existence and computation of invariant algebraic surfaces for three-dimensional complex polynomial vector fields, thus transferring a classical problem of Poincaré from dimension two to dimension three. Such surfaces are zero sets of certain polynomials which we call semi-invariants of the vector fields. The main part of the work deals with finding degree bounds for irreducible semi-invariants of a given polynomial vector field that satisfies certain properties for its stationary points at infinity. As a related topic, we investigate existence criteria and properties for algebraic Jacobi multipliers. Some results are stated and proved for polynomial vector fields in arbitrary dimension and their invariant hypersurfaces. In dimension three we obtain detailed results on possible degree bounds. Moreover by an explicit construction we show for quadratic vector fields that the conditions involving the stationary points at infinity are generic but they do not a priori preclude the existence of invariant algebraic surfaces. In an appendix we prove a result on invariant lines of homogeneous polynomial vector fields.


2021 ◽  
pp. 2150097
Author(s):  
Vicente Lorenzo

Minimal algebraic surfaces of general type [Formula: see text] such that [Formula: see text] are called Horikawa surfaces. In this note, [Formula: see text]-actions on Horikawa surfaces are studied. The main result states that given an admissible pair [Formula: see text] such that [Formula: see text], all the connected components of Gieseker’s moduli space [Formula: see text] contain surfaces admitting a [Formula: see text]-action. On the other hand, the examples considered allow us to produce normal stable surfaces that do not admit a [Formula: see text]-Gorenstein smoothing. This is illustrated by constructing non-smoothable normal surfaces in the KSBA-compactification [Formula: see text] of Gieseker’s moduli space [Formula: see text] for every admissible pair [Formula: see text] such that [Formula: see text]. Furthermore, the surfaces constructed belong to connected components of [Formula: see text] without canonical models.


2021 ◽  
pp. 1-21
Author(s):  
M. Amram ◽  
C. Gong ◽  
U. Sinichkin ◽  
S.-L. Tan ◽  
W.-Y. Xu ◽  
...  

In this paper, we consider the Galois covers of algebraic surfaces of degree 6, with all associated planar degenerations. We compute the fundamental groups of those Galois covers, using their degeneration. We show that for 8 types of degenerations, the fundamental group of the Galois cover is non-trivial and for 20 types it is trivial. Moreover, we compute the Chern numbers of all the surfaces with this type of degeneration and prove that the signatures of all their Galois covers are negative. We formulate a conjecture regarding the structure of the fundamental groups of the Galois covers based on our findings.


Sign in / Sign up

Export Citation Format

Share Document