Differential Evolution with Parameter Adaptation Strategy to Economic Dispatch Incorporating Wind

Author(s):  
G. R. Venkatakrishnan ◽  
J. Mahadevan ◽  
R. Rengaraj
Author(s):  
Haiqing Liu ◽  
Jinmeng Qu ◽  
Yuancheng Li

Background: As more and more renewable energy such as wind energy is connected to the power grid, the static economic dispatch in the past cannot meet its needs, so the dynamic economic dispatch of the power grid is imperative. Methods: Hence, in this paper, we proposed an Improved Differential Evolution algorithm (IDE) based on Differential Evolution algorithm (DE) and Artificial Bee Colony algorithm (ABC). Firstly, establish the dynamic economic dispatch model of wind integrated power system, in which we consider the power balance constraints as well as the generation limits of thermal units and wind farm. The minimum power generation costs are taken as the objectives of the model and the wind speed is considered to obey the Weibull distribution. After sampling from the probability distribution, the wind speed sample is converted into wind power. Secondly, we proposed the IDE algorithm which adds the local search and global search thoughts of ABC algorithm. The algorithm provides more local search opportunities for individuals with better evolution performance according to the thought of artificial bee colony algorithm to reduce the population size and improve the search performance. Results: Finally, simulations are performed by the IEEE-30 bus example containing 6 generations. By comparing the IDE with the other optimization model like ABC, DE, Particle Swarm Optimization (PSO), the experimental results show that obtained optimal objective function value and power loss are smaller than the other algorithms while the time-consuming difference is minor. The validity of the proposed method and model is also demonstrated. Conclusion: The validity of the proposed method and the proposed dispatch model is also demonstrated. The paper also provides a reference for economic dispatch integrated with wind power at the same time.


2011 ◽  
Vol 24 (2) ◽  
pp. 378-387 ◽  
Author(s):  
Youlin Lu ◽  
Jianzhong Zhou ◽  
Hui Qin ◽  
Ying Wang ◽  
Yongchuan Zhang

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
V. Gonuguntla ◽  
R. Mallipeddi ◽  
Kalyana C. Veluvolu

Differential evolution (DE) is simple and effective in solving numerous real-world global optimization problems. However, its effectiveness critically depends on the appropriate setting of population size and strategy parameters. Therefore, to obtain optimal performance the time-consuming preliminary tuning of parameters is needed. Recently, different strategy parameter adaptation techniques, which can automatically update the parameters to appropriate values to suit the characteristics of optimization problems, have been proposed. However, most of the works do not control the adaptation of the population size. In addition, they try to adapt each strategy parameters individually but do not take into account the interaction between the parameters that are being adapted. In this paper, we introduce a DE algorithm where both strategy parameters are self-adapted taking into account the parameter dependencies by means of a multivariate probabilistic technique based on Gaussian Adaptation working on the parameter space. In addition, the proposed DE algorithm starts by sampling a huge number of sample solutions in the search space and in each generation a constant number of individuals from huge sample set are adaptively selected to form the population that evolves. The proposed algorithm is evaluated on 14 benchmark problems of CEC 2005 with different dimensionality.


2019 ◽  
Vol 50 ◽  
pp. 100462 ◽  
Author(s):  
Adam Viktorin ◽  
Roman Senkerik ◽  
Michal Pluhacek ◽  
Tomas Kadavy ◽  
Ales Zamuda

Sign in / Sign up

Export Citation Format

Share Document