Ford Motor Side-View Recognition System Based on Wavelet Entropy and Back Propagation Neural Network and Levenberg-Marquardt Algorithm

Author(s):  
Wen-Juan Jia ◽  
Shuihua Wang ◽  
Huimin Lu ◽  
Ying Shao ◽  
Elizabeth Lee ◽  
...  
2020 ◽  
Vol 71 (6) ◽  
pp. 66-74
Author(s):  
Younis M. Younis ◽  
Salman H. Abbas ◽  
Farqad T. Najim ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

A comparison between artificial neural network (ANN) and multiple linear regression (MLR) models was employed to predict the heat of combustion, and the gross and net heat values, of a diesel fuel engine, based on the chemical composition of the diesel fuel. One hundred and fifty samples of Iraqi diesel provided data from chromatographic analysis. Eight parameters were applied as inputs in order to predict the gross and net heat combustion of the diesel fuel. A trial-and-error method was used to determine the shape of the individual ANN. The results showed that the prediction accuracy of the ANN model was greater than that of the MLR model in predicting the gross heat value. The best neural network for predicting the gross heating value was a back-propagation network (8-8-1), using the Levenberg�Marquardt algorithm for the second step of network training. R = 0.98502 for the test data. In the same way, the best neural network for predicting the net heating value was a back-propagation network (8-5-1), using the Levenberg�Marquardt algorithm for the second step of network training. R = 0.95112 for the test data.


Author(s):  
Benyamin Kusumoputro ◽  
◽  
Teguh P. Arsyad

Recognizing odor mixtures is rather difficult in artificial odor recognition system, especially when the number of sensors is limited. Classification is further hampered if the number of unlearned odor mixtures classes is increased. We developed a fuzzy-neuro multilayer perceptron as a pattern classifier and compared its recognition with that of the Probabilistic Neural Network and Back-propagation Neural Network. To enhance the recognition capability of the system, we then optimized fuzzy-neuro multilayer perceptron topology by deleting its weak weight connections using Genetic Algorithms. Experimental results show that the optimized fuzzy-neuro multilayer perceptron has the highest recognition in 18 classes of two-mixture odors with almost 98.2% when using hardware with 16 sensors, compared to 83.3% when using 8 sensors.


Author(s):  
T. Zh. Mazakov ◽  
D. N. Narynbekovna

Now a day’s security is a big issue, the whole world has been working on the face recognition techniques as face is used for the extraction of facial features. An analysis has been done of the commonly used face recognition techniques. This paper presents a system for the recognition of face for identification and verification purposes by using Principal Component Analysis (PCA) with Back Propagation Neural Networks (BPNN) and the implementation of face recognition system is done by using neural network. The use of neural network is to produce an output pattern from input pattern. This system for facial recognition is implemented in MATLAB using neural networks toolbox. Back propagation Neural Network is multi-layered network in which weights are fixed but adjustment of weights can be done on the basis of sigmoidal function. This algorithm is a learning algorithm to train input and output data set. It also calculates how the error changes when weights are increased or decreased. This paper consists of background and future perspective of face recognition techniques and how these techniques can be improved.


Sign in / Sign up

Export Citation Format

Share Document