Comparison of an Artificial Neural Network and a Multiple Linear Regression in Predicting the Heat of Combustion of Diesel Fuel Based on Hydrocarbon Groups

2020 ◽  
Vol 71 (6) ◽  
pp. 66-74
Author(s):  
Younis M. Younis ◽  
Salman H. Abbas ◽  
Farqad T. Najim ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

A comparison between artificial neural network (ANN) and multiple linear regression (MLR) models was employed to predict the heat of combustion, and the gross and net heat values, of a diesel fuel engine, based on the chemical composition of the diesel fuel. One hundred and fifty samples of Iraqi diesel provided data from chromatographic analysis. Eight parameters were applied as inputs in order to predict the gross and net heat combustion of the diesel fuel. A trial-and-error method was used to determine the shape of the individual ANN. The results showed that the prediction accuracy of the ANN model was greater than that of the MLR model in predicting the gross heat value. The best neural network for predicting the gross heating value was a back-propagation network (8-8-1), using the Levenberg�Marquardt algorithm for the second step of network training. R = 0.98502 for the test data. In the same way, the best neural network for predicting the net heating value was a back-propagation network (8-5-1), using the Levenberg�Marquardt algorithm for the second step of network training. R = 0.95112 for the test data.

2019 ◽  
Vol 269 ◽  
pp. 04004
Author(s):  
Fuad Mahfudianto ◽  
Eakkachai Warinsiriruk ◽  
Sutep Joy-A-Ka

A method for optimizing monitoring by using Artificial Neural Network (ANN) technique was proposed based on instability of arc voltage signal and welding current signal of solid wire electrode (GMAW). This technique is not only for effective process modeling, but also to illustrate the correlation between the input and output parameters responses. The algorithms of monitoring were developed in time domain by carrying out the Moving Average (M.A) and Root Mean Square (RMS) based on the welding experiment parameters such as travel speed, thickness of specimen, feeding speed, and wire electrode diameter to detect and estimate with a satisfactory sample size. Experiment data was divided into three subsets: train (70%), validation (15%), and test (15%). Error back-propagation of Levenberg-Marquardt algorithm was used to train for this algorithm. The proposed algorithms on this paper were used to estimate the variety the Contact Tip to Work Distance (CTWD) through Mean Square Error (MSE). Based on the results, the algorithms have shown that be able to detect changes in CTWD automatically and real time with takes 0.147 seconds (MSE 0.0087).


2010 ◽  
Vol 163-167 ◽  
pp. 2756-2760 ◽  
Author(s):  
Goh Lyn Dee ◽  
Norhisham Bakhary ◽  
Azlan Abdul Rahman ◽  
Baderul Hisham Ahmad

This paper investigates the performance of Artificial Neural Network (ANN) learning algorithms for vibration-based damage detection. The capabilities of six different learning algorithms in detecting damage are studied and their performances are compared. The algorithms are Levenberg-Marquardt (LM), Resilient Backpropagation (RP), Scaled Conjugate Gradient (SCG), Conjugate Gradient with Powell-Beale Restarts (CGB), Polak-Ribiere Conjugate Gradient (CGP) and Fletcher-Reeves Conjugate Gradient (CGF) algorithms. The performances of these algorithms are assessed based on their generalisation capability in relating the vibration parameters (frequencies and mode shapes) with damage locations and severities under various numbers of input and output variables. The results show that Levenberg-Marquardt algorithm provides the best generalisation performance.


Sign in / Sign up

Export Citation Format

Share Document