In Vivo Imaging of Nicotinic Acetylcholine Receptors in the Central Nervous System

Author(s):  
Masashi Ueda ◽  
Yuki Matsuura ◽  
Ryosuke Hosoda ◽  
Hideo Saji
1997 ◽  
Vol 86 (4) ◽  
pp. 859-865 ◽  
Author(s):  
Pamela Flood ◽  
Jose Ramirez-Latorre ◽  
Lorna Role

Background The mechanisms of action of general anesthetics are not completely understood. Many general anesthetics are reported to potentiate gamma-aminobutyric acid (GABAA) and glycine receptors in the central nervous system (CNS) and to inhibit the muscle-type nicotinic acetylcholine receptor (nAChR). The effects of general anesthetics on another family of ligand-gated ion channel in the CNS, the nAChRs, have not been defined. Methods Two types of CNS acetylcholine receptor, the alpha 4 beta 2 receptor or the alpha 7 homomeric receptor, were expressed heterologously in Xenopus laevis oocytes. Using the standard two-microelectrode voltage-clamp technique, peak acetylcholinegated current was measured before and after coapplication of isoflurane or propofol. Results Coapplication of either isoflurane or propofol with acetylcholine resulted in potent, dose-dependent inhibition of the alpha 4 beta 2 receptor current with median inhibitory concentrations of 85 and 19 microM, respectively. The inhibition of the alpha 4 beta 2 receptor by both isoflurane and propofol appears to be competitive with respect to acetylcholine. The alpha 7 receptor current was not effected by either anesthetic. Conclusions The CNS-type nAChRs are differentially affected by isoflurane and propofol. The alpha 4 beta 2 receptor is affected by isoflurane more potently than the most sensitive GABAA or glycine receptor that has been reported, whereas the alpha 7 homomeric receptor is not affected by either anesthetic. Inhibition of specific subtypes of nAChRs in the CNS, along with potentiation of GABAA and glycine receptors, may contribute to the effects and side effects of general anesthetics.


2019 ◽  
Vol 19 (2) ◽  
pp. 119-124
Author(s):  
Yuri N. Utkin

Background: Aging is a common and inevitable stage in the life cycle of higher organisms. Different organs, including the central nervous system, are affected by aging in different ways. Many processes are involved in aging, and neurodegeneration is one of the aging processes in which the central nervous system is engaged. Brain degeneration during normal aging underlies cognitive disorders experienced by older people. Not all molecular mechanisms associated with age-related neurodegeneration are fully understood; however, there is a whole range of data on the participation of nicotinic acetylcholine receptors in the processes of aging and neurodegeneration. Two main subtypes of nicotinic acetylcholine receptor α7 and α4β2 present in the central nervous system are affected by these processes. The loss of these receptor subtypes during normal aging is one of the reasons for the cognitive impairments. The decrease in nicotinic acetylcholine receptors is also very important for the pathogenesis of age-related neurodegenerative diseases. Thus, the drugs enhancing receptor functions may be considered promising for the treatment of cognitive dysfunction in the aged people. Conclusion: To achieve healthy longevity, the molecular processes that occur during aging should be established. In this regard, the participation and role of nicotinic acetylcholine receptors in the brain aging and degeneration are considered in this review.


Sign in / Sign up

Export Citation Format

Share Document