brain aging
Recently Published Documents


TOTAL DOCUMENTS

1610
(FIVE YEARS 652)

H-INDEX

95
(FIVE YEARS 14)

2022 ◽  
Vol 15 ◽  
Author(s):  
Chase R. Figley ◽  
Md Nasir Uddin ◽  
Kaihim Wong ◽  
Jennifer Kornelsen ◽  
Josep Puig ◽  
...  

Fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) are commonly used as MRI biomarkers of white matter microstructure in diffusion MRI studies of neurodevelopment, brain aging, and neurologic injury/disease. Some of the more frequent practices include performing voxel-wise or region-based analyses of these measures to cross-sectionally compare individuals or groups, longitudinally assess individuals or groups, and/or correlate with demographic, behavioral or clinical variables. However, it is now widely recognized that the majority of cerebral white matter voxels contain multiple fiber populations with different trajectories, which renders these metrics highly sensitive to the relative volume fractions of the various fiber populations, the microstructural integrity of each constituent fiber population, and the interaction between these factors. Many diffusion imaging experts are aware of these limitations and now generally avoid using FA, AD or RD (at least in isolation) to draw strong reverse inferences about white matter microstructure, but based on the continued application and interpretation of these metrics in the broader biomedical/neuroscience literature, it appears that this has perhaps not yet become common knowledge among diffusion imaging end-users. Therefore, this paper will briefly discuss the complex biophysical underpinnings of these measures in the context of crossing fibers, provide some intuitive “thought experiments” to highlight how conventional interpretations can lead to incorrect conclusions, and suggest that future studies refrain from using (over-interpreting) FA, AD, and RD values as standalone biomarkers of cerebral white matter microstructure.


Assessment ◽  
2022 ◽  
pp. 107319112110696
Author(s):  
Hana Markova ◽  
Adela Fendrych Mazancova ◽  
Dylan J. Jester ◽  
Katerina Cechova ◽  
Veronika Matuskova ◽  
...  

Innovative memory paradigms have been introduced to capture subtle memory changes in early Alzheimer’s disease (AD). We aimed to examine the associations between different indexes of the challenging Memory Binding Test (MBT) and hippocampal volume (HV) in a sample of individuals with subjective cognitive decline (SCD; n = 50), amnestic mild cognitive impairment (aMCI) due to AD ( n = 31), and cognitively normal (CN) older adults ( n = 29) recruited from the Czech Brain Aging Study, in contrast to traditional verbal memory tests. Both MBT free and cued recall scores in immediate and delayed recall conditions were associated with lower HV in both SCD and aMCI due to AD, whereas in traditional verbal memory tests only delayed recall scores were associated with lower HV. In SCD, the associations with lower HV in the immediate recall covered specific cued recall indexes only. In conclusion, the MBT is a promising test for detecting subtle hippocampal-associated memory decline during the predementia continuum.


Author(s):  
Md. Mashiar Rahman ◽  
Md. Abdullah Al Noman ◽  
Md. Walid Hossain ◽  
Rahat Alam ◽  
Selena Akter ◽  
...  

AbstractLoss of tubulin is associated with neurodegeneration and brain aging. Turmeric (Curcuma longa L.) has frequently been employed as a spice in curry and traditional medications in the Indian subcontinent to attain longevity and better cognitive performance. We aimed to evaluate the unelucidated mechanism of how turmeric protects the brain to be an anti-aging agent. D. melanogaster was cultured on a regular diet and turmeric-supplemented diet. β-tubulin level and physiological traits including survivability, locomotor activity, fertility, tolerance to oxidative stress, and eye health were analyzed. Turmeric showed a hormetic effect, and 0.5% turmeric was the optimal dose in preventing aging. β-tubulin protein level was decreased in the brain of D. melanogaster upon aging, while a 0.5% turmeric-supplemented diet predominantly prevented this aging-induced loss of β-tubulin and degeneration of physiological traits as well as improved β-tubulin synthesis in the brain of D. melanogaster early to mid-age. The higher concentration (≥ 1%) of turmeric-supplemented diet decreased the β-tubulin level and degenerated many of the physiological traits of D. melanogaster. The turmeric concentration-dependent increase and decrease of β-tubulin level were consistent with the increment and decrement data obtained from the evaluated physiological traits. This correlation demonstrated that turmeric targets β-tubulin and has both beneficial and detrimental effects that depend on the concentration of turmeric. The findings of this study concluded that an optimal dosage of turmeric could maintain a healthy neuron and thus healthy aging, by preventing the loss and increasing the level of β-tubulin in the brain.


2022 ◽  
pp. 1-17
Author(s):  
Ondrej Lerch ◽  
Martina Pařízková ◽  
Martin Vyhnálek ◽  
Zuzana Nedelská ◽  
Jakub Hort ◽  
...  

Background: Cholinergic deficit and medial temporal lobe (MTL) atrophy are hallmarks of Alzheimer’s disease (AD) leading to early allocentric spatial navigation (aSN) impairment. APOE ɛ4 allele (E4) is a major genetic risk factor for late-onset AD and contributes to cholinergic dysfunction. Basal forebrain (BF) nuclei, the major source of acetylcholine, project into multiple brain regions and, along with MTL and prefrontal cortex (PFC), are involved in aSN processing. Objective: We aimed to determine different contributions of individual BF nuclei atrophy to aSN in E4 positive and E4 negative older adults without dementia and assess whether they operate on aSN through MTL and PFC or independently from these structures. Methods: 120 participants (60 E4 positive, 60 E4 negative) from the Czech Brain Aging Study underwent structural MRI and aSN testing in real-space arena setting. Hippocampal and BF nuclei volumes and entorhinal cortex and PFC thickness were obtained. Associations between brain regions involved in aSN were assessed using MANOVA and complex model of mutual relationships was built using structural equation modelling (SEM). Results: Path analysis based on SEM modeling revealed that BF Ch1-2, Ch4p, and Ch4ai nuclei volumes were indirectly associated with aSN performance through MTL (pch1 - 2 = 0.039; pch4p = 0.042) and PFC (pch4ai = 0.044). In the E4 negative group, aSN was indirectly associated with Ch1-2 nuclei volumes (p = 0.015), while in the E4 positive group, there was indirect effect of Ch4p nucleus (p = 0.035). Conclusion: Our findings suggest that in older adults without dementia, BF nuclei affect aSN processing indirectly, through MTL and PFC, and that APOE E4 moderates these associations.


AIDS ◽  
2022 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
David Jakabek ◽  
Caroline D. Rae ◽  
Bruce J. Brew ◽  
Lucette A. Cysique
Keyword(s):  

Physiology ◽  
2022 ◽  
Author(s):  
Michelle W. Voss ◽  
Shivangi Jain

Physical activity has shown tremendous promise for counteracting cognitive aging, but also tremendous variability in cognitive benefits. We describe evidence for how exercise affects cognitive and brain aging, and whether cardiorespiratory fitness is a key factor. We highlight a brain network framework as a valuable paradigm for the mechanistic insight needed to tailor physical activity for cognitive benefits.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Eun-Hye Lee ◽  
Hyuk Sung Kwon ◽  
Seong-Ho Koh ◽  
Seong Hye Choi ◽  
Jeong-Hwa Jin ◽  
...  

Abstract Background Neurofilament light chain (NFL) level has been suggested as a blood-based biomarker for neurodegeneration in dementia. However, the association between baseline NFL levels and cognitive stage transition or cortical thickness is unclear. This study aimed to investigate whether baseline NFL levels are associated with cognitive stage transition or cortical thickness in mild cognitive impairment (MCI) and cognitively unimpaired (CU) participants. Methods This study analyzed data on participants from the independent validation cohort of the Korea Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer’s disease (KBASE-V) study. Among the participants of KBASE-V study, 53 MCI and 146 CU participants who were followed up for ≥ 2 years and had data on the serum NFL levels were eligible for inclusion in this study. Participants were classified into three groups according to baseline serum NFL levels of low, middle, or high. Results The Kaplan–Meier analysis showed association between the serum NFL tertiles and risk of cognitive stage transition in MCI (P = 0.002) and CU (P = 0.028) participants, analyzed separately. The same is true upon analysis of MCI and CU participants together (P < 0.001). In MCI participants, the highest serum NFL tertile and amyloid-beta positivity were independent predictors for cognitive stage transition after adjusting for covariates. For CU participants, only amyloid-beta positivity was identified to be an independent predictor. Conclusion The study shows that higher serum NFL tertile levels correlate with increased risk of cognitive stage transition in both MCI and CU participants. Serum NFL levels were negatively correlated with the mean cortical thickness of the whole-brain and specific brain regions.


2022 ◽  
Vol 119 (2) ◽  
pp. e2107833119
Author(s):  
Xinhui Wang ◽  
Diana Younan ◽  
Joshua Millstein ◽  
Andrew J. Petkus ◽  
Erika Garcia ◽  
...  

Late-life ambient air pollution is a risk factor for brain aging, but it remains unknown if improved air quality (AQ) lowers dementia risk. We studied a geographically diverse cohort of older women dementia free at baseline in 2008 to 2012 (n = 2,239, aged 74 to 92). Incident dementia was centrally adjudicated annually. Yearly mean concentrations of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) were estimated using regionalized national universal kriging models and averaged over the 3-y period before baseline (recent exposure) and 10 y earlier (remote exposure). Reduction from remote to recent exposures was used as the indicator of improved AQ. Cox proportional hazard ratios (HRs) for dementia risk associated with AQ measures were estimated, adjusting for sociodemographic, lifestyle, and clinical characteristics. We identified 398 dementia cases during follow up (median = 6.1 y). PM2.5 and NO2 reduced significantly over the 10 y before baseline. Larger AQ improvement was associated with reduced dementia risks (HRPM2.5 0.80 per 1.78 μg/m3, 95% CI 0.71–0.91; HRNO2 0.80 per 3.91 parts per billion, 95% CI 0.71–0.90), equivalent to the lower risk observed in women 2.4 y younger at baseline. Higher PM2.5 at baseline was associated with higher dementia risk (HRPM2.5 1.16 per 2.90 μg/m3, 95% CI 0.98–1.38), but the lower dementia risk associated with improved AQ remained after further adjusting for recent exposure. The observed associations did not substantially differ by age, education, geographic region, Apolipoprotein E e4 genotypes, or cardiovascular risk factors. Long-term AQ improvement in late life was associated with lower dementia risk in older women.


2021 ◽  
Author(s):  
You Wen Zhang ◽  
Xuehan Yang ◽  
Jingyue Liu ◽  
Yichen Pan ◽  
Ming Zhang ◽  
...  

Abstract Astrocyte, the most abundant cell type in the central nervous system, is increasingly recognized and is thought to depend on curial and diverse roles in maintaining brain homeostasis, the blood-brain barrier, ion homeostasis, secrete neurotrophic factors and regulate synaptic transmission which is essential to tune individual-to-network neuronal activity. Senescence in astrocytes has been discovered to be an important contributor to several age-related neurological diseases like Alzheimer's and Parkinson's disease. However, the latest research about astrocytes from aged subjects or aged astrocytes in vitro is not yet adequate to be well elucidated on their curial process in the regulation of brain function. In this study, an in vitro cell model of aged astrocytes was constructed by serial passaging until passage 20-25, and those passages within 1-5 were used as young astrocytes. Meanwhile, oxidative induced astrocyte senescence model was also constructed by H2O2 induction. Our results indicate that after serial passaging or oxidative stress-induced astrocytes, all showed manifest changes in several established markers of cellular senescence like P53, P21, the release of inflammatory cytokine IL-6 and SA-β-gal positive cells. Results also showed mitochondrial dysfunction in the oxidative stress-induced astrocyte senescence model and treatment of berberine could reverse these alterations. What’s more interests us is that those two types of senescent astrocytes’ conditioned medium co-cultured with neuronal cells could do impact on neuron apoptosis no matter in direct or indirect ways. This study may help us better understand the fundamental role of astrocyte senescence on the regulation of normal and pathological brain aging.


2021 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Derek C. Monroe ◽  
Samantha L. DuBois ◽  
Christopher K. Rhea ◽  
Donna M. Duffy

Contact and collision sports are believed to accelerate brain aging. Postmortem studies of the human brain have implicated tau deposition in and around the perivascular space as a biomarker of an as yet poorly understood neurodegenerative process. Relatively little is known about the effects that collision sport participation has on the age-related trajectories of macroscale brain structure and function, particularly in female athletes. Diffusion MRI and resting-state functional MRI were obtained from female collision sport athletes (n = 19 roller derby (RD) players; 23–45 years old) and female control participants (n = 14; 20–49 years old) to quantify structural coupling (SC) and decoupling (SD). The novel and interesting finding is that RD athletes, but not controls, exhibited increasing SC with age in two association networks: the frontoparietal network, important for cognitive control, and default-mode network, a task-negative network (permuted p = 0.0006). Age-related increases in SC were also observed in sensorimotor networks (RD, controls) and age-related increases in SD were observed in association networks (controls) (permuted p ≤ 0.0001). These distinct patterns suggest that competing in RD results in compressed neuronal timescales in critical networks as a function of age and encourages the broader study of female athlete brains across the lifespan.


Sign in / Sign up

Export Citation Format

Share Document