Shake Table Studies on Embankments on Liquefiable Soil

Author(s):  
G. Unni Kartha ◽  
K. S. Beena ◽  
C. P. Mohamed Thahir
Keyword(s):  
2020 ◽  
Vol 138 ◽  
pp. 106299 ◽  
Author(s):  
Chengshun Xu ◽  
Pengfei Dou ◽  
Xiuli Du ◽  
M. Hesham El Naggar ◽  
Masakatsu Miyajima ◽  
...  

Author(s):  
H. Damerji ◽  
S. Yadav ◽  
Y. Sieffert ◽  
L. Debove ◽  
F. Vieux-Champagne ◽  
...  
Keyword(s):  

Author(s):  
Marco Miglietta ◽  
Nicolò Damiani ◽  
Gabriele Guerrini ◽  
Francesco Graziotti

AbstractTwo full-scale building specimens were tested on the shake-table at the EUCENTRE Foundation laboratories in Pavia (Italy), to assess the effectiveness of an innovative timber retrofit solution, within a comprehensive research campaign on the seismic vulnerability of existing Dutch unreinforced masonry structures. The buildings represented the end-unit of a two-storey terraced house typical of the North-Eastern Netherlands, a region affected by induced seismicity over the last few decades. This building typology is particularly vulnerable to earthquake excitation due to lack of seismic details and irregular distribution of large openings in masonry walls. Both specimens were built with the same geometry. Their structural system consisted of cavity walls, with interior load-bearing calcium-silicate leaf and exterior clay veneer, and included a first-floor reinforced concrete slab, a second-floor timber framing, and a roof timber structure supported by masonry gables. A timber retrofit was designed and installed inside the second specimen, providing an innovative sustainable, light-weight, reversible, and cost-effective technique, which could be extensively applied to actual buildings. Timber frames were connected to the interior surface of the masonry walls and completed by oriented strands boards nailed to them. The second-floor timber diaphragm was stiffened and strengthened by a layer of oriented-strand boards, nailed to the existing joists and to additional blocking elements through the existing planks. These interventions resulted also in improved wall-to-diaphragm connections with the inner leaf at both floors, while steel ties were added between the cavity-wall leaves. The application of the retrofit system favored a global response of the building with increased lateral capacities of the masonry walls. This paper describes in detail the bare and retrofitted specimens, compares the experimental results obtained through similar incremental dynamic shake-table test protocols up to near-collapse conditions, and identifies damage states and damage limits associated with displacements and deformations.


2019 ◽  
Vol 155 ◽  
pp. 129-143 ◽  
Author(s):  
Ali A. Rad ◽  
Gregory A. MacRae ◽  
Nikoo K. Hazaveh ◽  
Quincy Ma

Author(s):  
Ganesh Mangavu ◽  
Anjan Kumar Dash

In this paper, an alternative design is proposed based on a family of three-legged manipulators. Such manipulators have two actuators (one vertical and one horizontal) in each leg, unlike the standard UP̅S Stewart platform, which has one actuator in each leg. The arrangement of the two actuators is such a way that, to have vertical motion of the shake table only the Vertical Motion Actuators (VMA) are actuated and for longitudinal or lateral motion, the Horizontal Motion Actuators (HMA) alone are moved. Due to its inherent features such as simplified kinematics, control and distributed loading, a study is carried out to determine the performance of such three-legged manipulators as a shake table. Sinusoidal motion and white noise motions are given to the actuators and shown that the VMA forces have linear relationship with the platform forces. The translational stiffness and the torsional stiffness are studied separately for the manipulators. In the dynamic analysis, it is highlighted that the gravity load of the legs is borne by the Vertical actuators, irrespective of the motion being spatial or planar. Hence, this topology provides scope for lighter electromechanical actuation. The performance analysis of the 3 legged configuration is accomplished using simulation results, in comparison to a 7-UP̅S configuration of shake table. A prototype of the shake table is fabricated and tested with earthquake data of El Centro.


2021 ◽  
pp. 102886
Author(s):  
Jianyang Xue ◽  
Pengchun Hu ◽  
Fengliang Zhang ◽  
Yan Zhuge

Sign in / Sign up

Export Citation Format

Share Document