seismic behavior
Recently Published Documents





2022 ◽  
Vol 12 (1) ◽  
pp. 1-16
K. Watanabe ◽  
A. Zafar ◽  
M. Tomita ◽  
K. Nishikouri

In recent years, there has been serious damage to embankments on liquefied ground because of large earthquakes. To understand such damage, many two-dimensional shaking table model tests have been performed, in both gravitational and centrifugal fields, to investigate the dynamic behavior and residual displacement of embankments and river dikes on liquefiable ground. In recent years, three-dimensional numerical analysis has been used in practical design because it is difficult to consider the complex dynamic behaviors of three-dimensional embankments and the surrounding liquefied ground in a two-dimensional analysis. However, there are only a limited number of cases in which the applicability of three-dimensional analysis has been validated based on comparisons with true values derived from model tests or data from actual disasters. Therefore, in this study, a series of shaking table tests were conducted to investigate the seismic behavior of a three-dimensional embankment on liquefiable ground. In addition, the effect of the shaking direction on the seismic behavior of the embankment was evaluated. The experiment revealed that the residual deformation and its dominant direction were significantly affected by the three-dimensional shape and total weight of the embankment, not by the shaking direction. This result indicates that the influence of the three-dimensional shape of the embankment on the deformation behavior cannot be ignored, and that the influence should be properly evaluated in seismic design.

Structures ◽  
2022 ◽  
Vol 37 ◽  
pp. 267-283
Esra Ozer ◽  
Mehmet Inel ◽  
Bayram Tanik Cayci

2022 ◽  
Vol 189 ◽  
pp. 107056
Ai-Lin Zhang ◽  
Xin Chen ◽  
Zi-Qin Jiang ◽  
Yi-Tao Kang ◽  
Xiao-Feng Yang

Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 511-520
Mehdi Alirezaei ◽  
Behrokh Hosseini Hashemi

2022 ◽  
pp. 136943322110655
Huifeng Hu ◽  
Jiepeng Liu ◽  
Guozhong Cheng ◽  
Yao Ding ◽  
Yohchia Frank Chen

The hybrid coupled shear wall (HCW) with replaceable coupling beam (CB) is an optimal component to recover buildings promptly after a severe earthquake. However, the reinstallation may be difficult or impossible with an identical CB because of the inelastic relative dislocation between two wall piers. This study proposes a novel HCW with different reinforcement ratios in the connection, which was tested under cyclic loading. After the test, the bolt holes can be located through terrestrial scanning, which is then utilized to fabricate a new CB that can accommodate the deformation between two wall piers. The newly replaced HCW system was also tested. As a result, all virgin test specimens fail in web fracture and show a significant inelastic chord rotation of 0.2 rad, exhibiting an excellent energy dissipation capacity. Meanwhile, the new method to locate the bolt holes after the test is feasible. The replaced HCW fails in the pull-off of anchor bars and shows poor seismic behavior due to the unpatched concrete cover in the connection. To improve the energy dissipation for the replaced HCW, high-strength grouting in the connection can be used and high-strength material can be used to replace the usual anchor bolts.

Sign in / Sign up

Export Citation Format

Share Document