Theoretical Prediction of Wave-Induced Sediment Resuspension

Author(s):  
Yonggang Jia ◽  
Xiaolei Liu ◽  
Shaotong Zhang ◽  
Hongxian Shan ◽  
Jiewen Zheng
2019 ◽  
Vol 51 (1) ◽  
pp. 129-154 ◽  
Author(s):  
Leon Boegman ◽  
Marek Stastna

Large-amplitude internal waves induce currents and turbulence in the bottom boundary layer (BBL) and are thus a key driver of sediment movement on the continental margins. Observations of internal wave–induced sediment resuspension and transport cover significant portions of the world's oceans. Research on BBL instabilities, induced by internal waves, has identified several mechanisms by which the BBL is energized and sediment may be resuspended. Due to the complexity of the induced currents, process-oriented research using theory, direct numerical simulations, and laboratory experiments has played a vital role. However, experiments and simulations have inherent limitations as analogs for oceanic conditions due to disparities in Reynolds number and grid resolution, respectively. Parameterizations are needed for modeling resuspension from observed data and in larger-scale models, with the efficacy of parameterizations based on the quadratic stress largely determining the accuracy of present field-scale efforts.


2019 ◽  
Vol 55 (2) ◽  
pp. 1279-1295 ◽  
Author(s):  
D. C. Roberts ◽  
P. Moreno‐Casas ◽  
F. A. Bombardelli ◽  
S. J. Hook ◽  
B. R. Hargreaves ◽  
...  

Estuaries ◽  
1999 ◽  
Vol 22 (1) ◽  
pp. 39 ◽  
Author(s):  
Lars Chresten Lund-Hansen ◽  
Mona Petersson ◽  
Wayan Nurjaya

1964 ◽  
Vol 1 (9) ◽  
pp. 47
Author(s):  
J.T. O'Brien ◽  
B.J. Muga

Sea tests of motion and mooring force were conducted on an LST (Landing Ship Tank) of about 44O0 long tons displacement. The LST was spread-moored by six 2-1/16 inch and one 1-1/4 inch (port breast) stud-link chains in simple catenary configuration in about 45 feet of water in the open Gulf of Mexico about 65 air miles south of New Orleans, Louisiana. Water-level variations at a single location, ship rotations and accelerations, mooring force, and wind were measured in sea states of 2 and 4. Three recordings of 38, 62, 67 minutes duration were analyzed, using timeseries techniques to provide apparent amplitude-response operators for all of the ship's motions and seven mooring chains. Theoretical prediction of the operators using long crested regular waves was made also. In longitudinal plane, theory predicts motions 1/3 to 4 times and chain tensions 1/4 to 9 times those measured. The most probable maximum-motion amplitude responses in sea state 4 are found to be 1.7, 1.1, and 1.7 feet, respectively, in surge, sway and heave, and 3.4 and 0.5 degrees, respectively in pitch and yaw. Roll was measured only in sea-state 2 with a corresponding maximum of 2.1 degrees. Maximum wave-induced chain tensions in kips were: 85.1 and 48.0 in port and starboard bow chains respectively; 10.6 (sea state 2) and 19.7 in port and starboard breast chains; 13.9 and 4.3 in port and starboard quarter chains (sea state 2) and 9.7 in stem chain. Total tension in port bow chain was 116.1 kips (85.1 plus initial tension of 31.0 kips). Chain response operators vary directly with initial tension, whicl complicates design. It is concluded that: (i) moor was unbalanced, i.e., port bow chain took most of load; (ii) chains loaded lightly, e.g., maximum wave induced tension was 116 kips compared to new proof load of 300 kips for the particular chain, the port bow; (iii) water level should be measured at more than one point; (iv) discouragement over differences is balanced by encouragement over agreements between measurements and theoretical prediction of motion and chain tension; (v) toward improvement: Theory needs extension to include short crested waves and barge types; (vi) initial tension unique to problem of mooring design; (vii) propulsion devices may be needed toward maintaining design initial tension, especially in storm; (viii) if directional spectra had been measured and if theory involving short crested waves had been available and used, then discrepancies between observation and theory likely would have been less.


2020 ◽  
Author(s):  
Gábor Fleit ◽  
Sándor Baranya

<p>The ever-increasing demand for fluvial navigation and the more and more efforts made for ecologically sustainable water usage (facilitated by e.g. the Water Framework Directive of the EU) have highlighted potential conflicts of interests in river management. Riverine traffic has notable hydrodynamic effects, i.e. the local hydraulic regime of river reaches may get significantly altered by wave events generated by passing vessels. As ship waves reach the shallower areas, the related hydrodynamic stresses affect the near-bed boundary layer increasingly, bed shear stress increases gradually, leading to the resuspension of fine sediments. In order to find out more about the nature of this phenomenon, simultaneous ABS (acoustic backscatter sensor) and ADV (acoustic Doppler velocimeter) measurement were performed in the Hungarian Danube. Such measurement not only offer the opportunity to reveal the likely interconnections between hydrodynamic variables (e.g. flow velocity, turbulent kinetic energy) and suspended sediment concentrations (SSC), but the found correlation between ABS data and the backscatter strength of the ADV also suggests the applicability of the latter for the estimation of instantaneous SSC in a high temporal resolution.</p>


Sign in / Sign up

Export Citation Format

Share Document