Linear Instability Analysis of Viscous Planar Liquid Sheet Sandwiched Between Two Moving Gas Streams

Author(s):  
Debayan Dasgupta ◽  
Sujit Nath ◽  
Dipankar Bhanja
2011 ◽  
Vol 66-68 ◽  
pp. 1556-1561 ◽  
Author(s):  
Kai Yan ◽  
Ming Lv ◽  
Zhi Ning ◽  
Yun Chao Song

A three-dimensional linear instability analysis was carried out for an annular swirling viscous liquid jet with solid vortex swirl velocity profile. An analytical form of dispersion relation was derived and then solved by a direct numerical procedure. A parametric study was performed to explore the instability mechanisms that affect the maximum spatial growth rate. It is observed that the liquid swirl enhances the breakup of liquid sheet. The surface tension stabilizes the jet in the low velocity regime. The aerodynamic force intensifies the developing of disturbance and makes the jet unstable. Liquid viscous force holds back the growing of disturbance and the makes the jet stable, especially in high liquid velocity regime.


Author(s):  
Fathollah Ommi ◽  
Seid Askari Mahdavi ◽  
S. Mostafa Hosseinalipour ◽  
Ehsan Movahednejad

A linear instability analysis of an inviscid annular liquid sheet emanating from an atomizer subjected to inner and outer swirling air streams has been carried out. The dimensionless dispersion equation that governs the instability is derived. The dispersion equation solved by Numerical method to investigate the effects of the liquid-gas swirl orientation on the maximum growth rate and its corresponding unstable wave number that it produces the finest droplets. To understand the effect of air swirl orientation with respect to liquid swirl direction, four possible combinations with both swirling air streams with respect to the liquid swirl direction have been considered. Results show that at low liquid swirl Weber number a combination of co-inner air stream and counter-outer air stream has the largest most unstable wave number and shortest breakup length. The combination of inner and the outer air stream co-rotating with the liquid has the highest growth rate.


Sign in / Sign up

Export Citation Format

Share Document