liquid jet
Recently Published Documents


TOTAL DOCUMENTS

1740
(FIVE YEARS 252)

H-INDEX

60
(FIVE YEARS 8)

Author(s):  
Daehee Kwon ◽  
Dongkuk Kang ◽  
The‐Hung Dinh ◽  
Doo‐Man Chun ◽  
Eunseop Yeom
Keyword(s):  

2022 ◽  
Author(s):  
Dominic S. Sebastian ◽  
Sonu K. Thomas ◽  
T M Muruganandam

Author(s):  
Zhiliang Zhang ◽  
Jiaqi Lu ◽  
Bingqian Lv ◽  
Wei Liu ◽  
Shuyuan Shen ◽  
...  

The gas-liquid jet flow was proved to be capable of inducing chemical consequences which can lead to the decomposition of methylene blue (MB). The reaction process follows a pseudo-first-order kinetics....


Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Max Koch ◽  
Juan Manuel Rosselló ◽  
Christiane Lechner ◽  
Werner Lauterborn ◽  
Robert Mettin

The dynamics of a laser-induced bubble on top of a solid cylinder is studied both experimentally and numerically. When the bubble is generated close to the flat top along the axis of the cylinder and its maximum radius exceeds the one of the flat top surface, it collapses in the form of a mushroom with a footing on the cylinder, a long stem and a hat-like cap typical for a mushroom head. The head may collapse forming a thin, fast liquid jet into the stem, depending on bubble size and bubble distance to the top of the cylinder. Several experimental and numerical examples are given. The results represent a contribution to understand the behavior of bubbles collapsing close to structured surfaces and in particular, how thin, fast jets are generated.


2021 ◽  
Vol 127 (24) ◽  
Author(s):  
H. Liu ◽  
Z. Wang ◽  
L. Gao ◽  
Y. Huang ◽  
H. Tang ◽  
...  

Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 382
Author(s):  
Xiao Cui ◽  
Boqi Jia

The linear instability of an annular liquid jet with a radial temperature gradient in an inviscid gas steam is investigated theoretically. A physical model of an annular liquid jet with a radial temperature gradient is established, dimensionless governing equations and boundary conditions are given, and numerical solutions are obtained using the spectral collocation method. The correctness of the results is verified to a certain extent. The liquid surface tension coefficient is assumed to be a linear function of temperature. The effects of various dimensionless parameters (including the Marangoni number/Prandtl number, Reynolds number, temperature gradient, Weber number, gas-to-liquid density ratio and velocity ratio) on the instability of the annular liquid jet are discussed. A decreasing Weber number destabilizes the annular liquid jet when the Weber number is lower than a critical value. It is found that the effects of the Marangoni effect are related to the Weber number. The Marangoni effect enhances instability when the Weber number is small, while the Marangoni effect weakens instability when the Weber number is large. In addition, because the thermal effect is considered, a decreasing Reynolds number enhances the instability when the Weber number is lower than a critical value, which is similar to the results of a viscous liquid sheet with a temperature difference between two planar surfaces. Furthermore, the effects of other dimensionless parameters are also investigated.


2021 ◽  
Vol 932 ◽  
Author(s):  
Rui Han ◽  
A-Man Zhang ◽  
Sichao Tan ◽  
Shuai Li

We experimentally, numerically and theoretically investigate the nonlinear interaction between a cavitation bubble and the interface of two immiscible fluids (oil and water) on multiple time scales. The underwater electric discharge method is utilized to generate a cavitation bubble near or at the interface. Both the bubble dynamics on a short time scale and the interface evolution on a much longer time scale are recorded via high-speed photography. Two mechanisms are found to contribute to the fluid mixing in our system. First, when a bubble is initiated in the oil phase or at the interface, an inertia-dominated high-speed liquid jet generated from the collapsing bubble penetrates the water–oil interface, and consequently transports fine oil droplets into the water. The critical standoff parameter for jet penetration is found to be highly dependent on the density ratio of the two fluids. Furthermore, the pinch-off of an interface jet produced long after the bubble dynamics stage is reckoned as the second mechanism, carrying water droplets into the oil bulk. The dependence of the bubble jetting behaviours and interface jet dynamics on the governing parameters is systematically studied via experiments and boundary integral simulations. Particularly, we quantitatively demonstrate the respective roles of surface tension and viscosity in interface jet dynamics. As for a bubble initiated at the interface, an extended Rayleigh–Plesset model is proposed that well predicts the asymmetric dynamics of the bubble, which accounts for a faster contraction of the bubble top and a downward liquid jet.


Sign in / Sign up

Export Citation Format

Share Document