aerodynamic force
Recently Published Documents


TOTAL DOCUMENTS

803
(FIVE YEARS 226)

H-INDEX

28
(FIVE YEARS 5)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 393
Author(s):  
Zhe Zhang ◽  
Qiang Wang ◽  
Shida Song ◽  
Chengchun Zhang ◽  
Luquan Ren ◽  
...  

With the rapid development of FSAE, the speed of racing cars has increased year by year. As the main research content of racing cars, aerodynamics has received extensive attention from foreign teams. For racing cars, the aerodynamic force on the aerodynamic device ultimately acts on the tires through the transmission of the body and the suspension. When the wheel is subjected to the vertical load generated by the aerodynamic device, the ultimate adhesion capacity of the wheel is improved. Under changing conditions, racing wheels can withstand greater lateral and tangential forces. Therefore, the effects of aerodynamics have a more significant impact on handling stability. The FSAE racing car of Jilin University was taken as the research object, and this paper combines the wind tunnel test, the numerical simulation and the dynamics simulation of the racing system. The closed-loop design process of the aerodynamics of the FSAE racing car was established, and the joint study of aerodynamic characteristics and handling stability of racing car under different body attitudes was realized. Meanwhile, the FSAE car was made the modification of aerodynamic parameter on the basis of handling stability. The results show that, after the modification of the aerodynamic parameters, the critical speed of the car when cornering is increased, the maneuverability of the car is improved, the horoscope test time is reduced by 0.525 s, the downforce of the car is increased by 11.39%, the drag is reduced by 2.85% and the lift-to-drag ratio is increased by 14.70%. Moreover, the pitching moment is reduced by 82.34%, and the aerodynamic characteristics and aerodynamic efficiency of the racing car are obviously improved. On the basis of not changing the shape of the body and the aerodynamic kit, the car is put forward to shorten the running time of the car and improve the comprehensive performance of the car, so as to improve the performance of the car in the race.


2022 ◽  
Vol 355 ◽  
pp. 01018
Author(s):  
Ying Liu ◽  
Xiaobo Zhang ◽  
Fei Zhang

Along with the development of advanced high-performance aero-engines to the higher thrust-weight ratio, further improvement of stage load, the adoption of new materials and new lightweight structures, the aeroelasticity of blade structure is becoming more and more prominent. The high cycle fatigue failure of blades significantly reduces the structural reliability during the process of development and using. At the same time, a large number of failure forms of aero-engine experimental and server can be attributed to aeroelastic problems. Therefore, it is urgent to improve the aeroelastic stability of the blade. One of the most important factors is to suppress the airflow separation, but its mechanism is still unclear. Based on this, this paper combines the aerodynamic damping analysis of energy method with the plasma excitation simulation and references low-speed wind tunnel plasma expansion test to consider the effects of different exciter distributions and intensities on flutter. The results show that stall flutter is related to the flow separation, but the flow separation is not a key factor that determinates whether the flutters occurs or not. Flutter suppression is strongly correlated with the shock wave intensity, amplitude of first harmonic aerodynamic force, low-speed separation and aerodynamic work density. In addition, the relative distribution of the excitation field and the positive work zone also has a direct effect on the suppression of flutter.


Author(s):  
Amirhossein Ghasemikaram ◽  
Abbas Mazidi ◽  
S. Ahmad Fazelzadeh ◽  
Dieter Scholz

The aim of this paper is to present a flutter analysis of a 3D Box-Wing Aircraft (BWA) configuration. The box wing structure is considered as consisting of two wings (front and rear wings) connected with a winglet. Plunge and pitch motions are considered for each wing and the winglet is modeled by a longitudinal spring. In order to exert the effect of the wing-joint interactions (bending and torsion coupling), two ends of the spring are located on the gravity centers of the wings tip sections. Wagner unsteady model is used to simulate the aerodynamic force and moment on the wing. The governing equations are extracted via Hamilton’s variational principle. To transform the resulting partial integro-differential governing equations into a set of ordinary differential equations, the assumed modes method is utilized. In order to confirm the aerodynamic model, the flutter results of a clean wing are compared and validated with the previously published results. Also, for the validation, the 3D box wing aircraft configuration flutter results are compared with MSC NASTRAN software and good agreement is observed. The effects of design parameters such as the winglet tension stiffness, the wing sweep and dihedral angles, and the aircraft altitude on the flutter velocity and frequency are investigated. The results reveal that physical and geometrical properties of the front and rear wings and also the winglet design have a significant influence on BWA aeroelastic stability boundary.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8224
Author(s):  
Jan Michna ◽  
Krzysztof Rogowski ◽  
Galih Bangga ◽  
Martin O. L. Hansen

Accurate computation of the performance of a horizontal-axis wind turbine (HAWT) using Blade Element Momentum (BEM) based codes requires good quality aerodynamic characteristics of airfoils. This paper shows a numerical investigation of transitional flow over the DU 91-W2-250 airfoil with chord-based Reynolds number ranging from 3 × 106 to 6 × 106. The primary goal of the present paper is to validate the unsteady Reynolds averaged Navier-Stokes (URANS) approach together with the four-equation transition SST turbulence model with experimental data from a wind tunnel. The main computational fluid dynamics (CFD) code used in this work was ANSYS Fluent. For comparison, two more CFD codes with the Transition SST model were used: FLOWer and STAR-CCM +. The obtained airfoil characteristics were also compared with the results of fully turbulent models published in other works. The XFOIL approach was also used in this work for comparison. The aerodynamic force coefficients obtained with the Transition SST model implemented in different CFD codes do not differ significantly from each other despite the different mesh distributions used. The drag coefficients obtained with fully turbulent models are too high. With the lowest Reynolds numbers analyzed in this work, the error in estimating the location of the transition was significant. This error decreases as the Reynolds number increases. The applicability of the uncalibrated transition SST approach for a two-dimensional thick airfoil is up to the critical angle of attack.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8121
Author(s):  
Maria Torres-Falcon ◽  
Omar Rodríguez-Abreo ◽  
Francisco Antonio Castillo-Velásquez ◽  
Alejandro Flores-Rangel ◽  
Juvenal Rodríguez-Reséndiz ◽  
...  

In Mexico and many parts of the world, land cargo transport units (UTTC) operate at high speeds, causing accidents, increased fuel costs, and high levels of polluting emissions in the atmosphere. The speed in road driving, by the carriers, has been a factor little studied; however, it causes serious damage. This problem is reflected in accidents, road damage, low efficiency in the life of the engine and tires, low fuel efficiency, and high polluting emissions, among others. The official Mexican standard NOM-012-SCT-2-2017 on the weight and maximum dimensions with which motor transport vehicles can circulate, which travel through the general communication routes of the federal jurisdiction, establishes the speed limit at the one to be driven by an operator. Because of the new reality, the uses and customs of truck operators have been affected, mainly in their operating expenses. In this work, a mathematical model is presented with which the optimum driving speed of a UTTC is obtained. The speed is obtained employing the equality between the forces required to move the motor unit and the force that the tractor has available. The required forces considered are the force on the slope, the aerodynamic force, and the friction force, and the force available was considered the engine torque. This mathematical method was tested in seven routes in Mexico, obtaining significant savings of fuel above 10%. However, the best performance route possesses 65% flat terrain and 35% hillocks without mountainous terrain, regular type of highway, and a load of 20,000 kg, where the savings increase up to 16.44%.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jihang Lyu ◽  
Rong Yang ◽  
Lingcai Huang

The significant dynamic response under the combined impact of aerodynamic and hydrodynamic forces could be likely to appear because of the structural flexibility, when taxiing on the water surface for amphibious aircraft. Meanwhile, the modal characteristics of the structure are also affected by the additional motion of water. These require that the influence of the structural elasticity and the coupling effect between water and structure should be considered in dynamic response analysis of water-taxiing. According to the peculiarities of the amphibious aircraft, structural dynamics model is based on the distribution of stiffness and mass, Virtual Mass Theory is utilized to solve the wet modes on the water surface, rational function approximations of unsteady aerodynamic force in time-domain are constructed by the Minimum-State Approximation Formula, and loose coupling method is employed to simulate the hydrodynamic elastic response under the encounter of amphibian with single wave and repeated waves, respectively. Analysis of dynamic characteristics during the water-taxiing of the amphibious aircraft has been achieved in this work. The results show that wet natural frequencies of the aircraft have different degrees of decline compared with the dry frequencies because of the influence of added water on the hull, and the response amplitude of dynamic loads obtained by using the wet modes have some certain extent decrease compared with the dry modes. The dynamic amplitude of different locations changes in different degree relatives to the center of gravity position, which reflects the influence of structural elasticity. Due to the excitation of single wave and repeated waves, the structural vibration amplitude will increase rapidly, but the amplitude shows a certain divergence trend under the action of repeated waves with a given oscillation frequency, which is more severe for structural strength design.


2021 ◽  
Author(s):  
Jianqing Li ◽  
Shameng Wen ◽  
Hua Zhong

Abstract This paper investigates a formation control technique based on the use of moving masses. First, the mechanism of the moving mass control is conducted to reveal the relation between the attitude and the offsets of moving masses. Then, to achieve the desired formation control, the aerodynamic force generated by the change of attitudes is used as the control input to implement the orbit control. The moving masses and magnetic torquers constitute a combined actuator to drive the satellite attitude. To deal with the offset saturation of moving masses, an adaptive controller is investigated. Finally, a simulation on two satellites formation is provided, demonstrating the feasibility of the proposed method.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042059
Author(s):  
S F Borodkin ◽  
M A Kiselev ◽  
M V Shkurin

Abstract the dynamics of aircraft motion is determined, as is well known, by the acting forces. When an airplane is flying, these forces include the total aerodynamic force, the thrust force of the propulsion system, and the force of gravity. Hybrid Airship differs from an aircraft by the presence, in addition to the above, of aerostatic force, the value of which depends, among other things, on the height of flight of the Hybrid Airship. The presence of aerostatic force affects the maneuverability of a Hybrid Airship. The proposed article analyzes the changes in the characteristics of a Hybrid Airship turn caused by the presence of aerostatic force.


IJIREEICE ◽  
2021 ◽  
Vol 9 (10) ◽  
Author(s):  
Preethi a ◽  
Sivaraman a ◽  
Magesh kumar

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jiangjun Ruan ◽  
Li Zhang ◽  
Wei Cai ◽  
Daochun Huang ◽  
Jian Li ◽  
...  

Due to the uncontrollable weather conditions, it is difficult to carry out the controllable prototype test to study fatigue damage of transmission tower and armour clamp and the effect evaluation of antigalloping device under actual transmission line galloping. Considering the geometric nonlinearity of the transmission line system, this study proposed an adaptive excitation method to establish the controllable transmission line galloping test system based on the Den Hartog vertical oscillation mechanism. It can skip the complicated process of nonlinear aerodynamic force simulation. An electromagnetic repulsion mechanism based on the eddy current principle was designed to provide periodic excitation for the conductor system according to the adaptive excitation method. The finite element model, including conductor, insulator string, and electromagnetic mechanism, was established. Newmark method and fourth-order Runge-Kutta algorithm were used to complete the integrated simulation calculation. By comparing with the measured data record of the actual transmission line galloping test, the results show that the proposed adaptive galloping excitation system can effectively reconstruct the key characteristics of the actual transmission line galloping, such as amplitude, frequency, galloping mode, and dynamic tension, and make the galloping state controllable. Thus, a series of research about transmission line galloping with practical engineering significance can be carried out.


Sign in / Sign up

Export Citation Format

Share Document