Linear Instability Analysis of an Annular Liquid Sheet With Inner and Outer Gas Flow

Author(s):  
Fathollah Ommi ◽  
Seid Askari Mahdavi ◽  
S. Mostafa Hosseinalipour ◽  
Ehsan Movahednejad

A linear instability analysis of an inviscid annular liquid sheet emanating from an atomizer subjected to inner and outer swirling air streams has been carried out. The dimensionless dispersion equation that governs the instability is derived. The dispersion equation solved by Numerical method to investigate the effects of the liquid-gas swirl orientation on the maximum growth rate and its corresponding unstable wave number that it produces the finest droplets. To understand the effect of air swirl orientation with respect to liquid swirl direction, four possible combinations with both swirling air streams with respect to the liquid swirl direction have been considered. Results show that at low liquid swirl Weber number a combination of co-inner air stream and counter-outer air stream has the largest most unstable wave number and shortest breakup length. The combination of inner and the outer air stream co-rotating with the liquid has the highest growth rate.

2011 ◽  
Vol 66-68 ◽  
pp. 1556-1561 ◽  
Author(s):  
Kai Yan ◽  
Ming Lv ◽  
Zhi Ning ◽  
Yun Chao Song

A three-dimensional linear instability analysis was carried out for an annular swirling viscous liquid jet with solid vortex swirl velocity profile. An analytical form of dispersion relation was derived and then solved by a direct numerical procedure. A parametric study was performed to explore the instability mechanisms that affect the maximum spatial growth rate. It is observed that the liquid swirl enhances the breakup of liquid sheet. The surface tension stabilizes the jet in the low velocity regime. The aerodynamic force intensifies the developing of disturbance and makes the jet unstable. Liquid viscous force holds back the growing of disturbance and the makes the jet stable, especially in high liquid velocity regime.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Xiao Cui ◽  
Qing-Fei Fu ◽  
Lijun Yang ◽  
Luo Xie ◽  
Bo-Qi Jia

Abstract A temporal linear instability analysis was performed for a liquid sheet moving around the inviscid gas in transverse electrical field. The fluid was described by the leaky-dielectric model, which is more complex and more comparable to the liquid electrical properties than existing models. As a result, the sinuous and the varicose modes exist, in which the dimensionless dispersion relation between wave number and temporal growth rate can be derived as a 3 × 3 matrix. According to this relationship, the effects of liquid properties on sheet instability were performed. It was concluded that, as the electrical Euler number (Eu), the ratio of gas-to-liquid density (ρ), Weber number (We), Reynolds number (Re), and the relative relaxation time (τ) increased, the instability of the sheet was enhanced. This work also compared the leaky-dielectric model with the perfect conductor model and found that the unstable growth rate in the leaky-dielectric model was higher than the one in the perfect conductor model. Moreover, as the ratio of gas-to-liquid improved, this difference decreased. Finally, an energy approach was adopted to investigate the instability mechanism for the two models.


2014 ◽  
Vol 694 ◽  
pp. 288-291
Author(s):  
Run Ze Duan ◽  
Zhi Ying Chen ◽  
Li Jun Yang

An electrified liquid sheet injected into a dielectric moving through a viscous gas bounded by two horizontal parallel flat plates of a transverse electric field is investigated with the linear analysis method. The liquid sheet velocity profile and the gas boundary layer thickness are taken into account. The relationship between temporal growth rate and the wave number was obtained using linear stability analysis and solved using the Chebyshev spectral collocation method. The effects of the velocity profile on the stability of the electrified liquid sheet were revealed for both sinuous mode and varicose mode. The results show that the growth rate of the electrified Newtonian liquid is greater than that of corresponding Newtonian one under the same condition, and the growth rate of the sinuous mode is greater than that of the varicose mode. Keywords: instability; planar liquid sheet; velocity profile;spectral method;linear analysis


Sign in / Sign up

Export Citation Format

Share Document