Cryptocurrency Price Prediction Based on Historical Data and Social Media Sentiment Analysis

Author(s):  
Soumyajit Pathak ◽  
Alpana Kakkar
2021 ◽  
Vol 17 (3) ◽  
pp. 265-274
Author(s):  
Mohammad Ashraf Ottom ◽  
Khalid M.O. Nahar

2021 ◽  
Author(s):  
Zhaoxia Wang ◽  
Zhenda HU ◽  
Fang LI ◽  
Seng-Beng HO

Abstract Stock market trending analysis is one of the key research topics in financial analysis. Various theories once highlighted the non-viability of stock market prediction. With the advent of machine learning and Artificial Intelligence (AI), more and more efforts have been devoted to this research area, and predicting the stock market has been demonstrated to be possible. Learning-based methods have been popularly studied for stock price prediction. However, due to the dynamic nature of the stock market and its non-linearity, stock market prediction is still one of the most dificult tasks. With the rise of social networks, huge amount of data is being generated every day and there is a gaining in popularity of incorporating these data into prediction model in the effort to enhance the prediction performance. Therefore, this paper explores the possibilities of the viability of learning-based stock market trending prediction by incorporating social media sentiment analysis. Six machine learning methods including Multi-Layer Perception, Support Vector Machine, Naïve Bayes, Random Forest, Logistic Regression and Extreme Gradient Boosting are selected as the baseline model. The result indicates the possibilities of successful stock market trending prediction and the performance of different learning-based methods is discussed. It is discovered that the distribution of the value of stocks may affect the prediction performance of the methods involved. This research not only demonstrates the merits and weaknesses of different learning-based methods, but also points out that incorporating social opinion is a right direction for improving the performance of stock market trending prediction.


2021 ◽  
Author(s):  
Alexandre Heiden ◽  
Rafael Stubs Parpinelli

Financial news has been proven to be valuable source of information for the evaluation of stock market volatility. Most of the attention has been given to social media platforms, while news from vehicles such as newspapers are not as widely explored. Newspapers provide, although in a smaller volume, more reliable information than social media platforms. In this context, this research aims to examine the influence of financial news within the stock price prediction problem, by using the VADER sentiment analysis model to process the news and feed the sentiments as a feature into a LSTM-based stock price prediction model, along with the historical data of the assets. Experiments indicate that the model has better results when the news’ sentiments are considered, and the model demonstrates potential to accurately predict stock prices up to around 60 days into the future.


Sign in / Sign up

Export Citation Format

Share Document