A Modified Approach for the Removal of Impulse Noise from Mammogram Images

Author(s):  
S. Sreedevi ◽  
Terry Jacob Mathew
2020 ◽  
Vol 20 (04) ◽  
pp. 2050032
Author(s):  
Rubul Kumar Bania ◽  
Anindya Halder

Mammography imaging is one of the most widely used techniques for breast cancer screening and analysis of abnormalities. However, due to some technical difficulties during the time of acquisition and digital storage of mammogram images, impulse noise may be present. Therefore, detection and removals of impulse noise from the mammogram images are very essential for early detection and further diagnosis of breast cancer. In this paper, a novel adaptive trimmed median filter (ATMF) is proposed for impulse noise (salt & pepper (SNP)) detection and removal with an application to mammogram image denoising. Automatic switching mechanism for updating the Window of Interest (WoI) size from ([Formula: see text]) to ([Formula: see text]) or ([Formula: see text]) is performed. The proposed method is applied on publicly available mammogram images corrupted with varying SNP noise densities in the range 5%–90%. The performance of the proposed method is measured by various quantitative indices like peak signal to noise ratio (PSNR), mean square error (MSE), image enhancement factor (IEF) and structural similarity index measure (SSIM). The comparative analysis of the proposed method is done with respect to other state-of-the-art noise removal methods viz., standard median filter (SMF), decision based median filter (DMF), decision based unsymmetric trimmed median filter (DUTMF), modified decision based unsymmetric trimmed median filter (MDUTMF) and decision based unsymmetric trimmed winsorized mean filter (DUTWMF). The superiority of the proposed method over other compared methods is well evident from the experimental results in terms of the quantitative indices (viz., PSNR, IEF and SSIM) and also from the visual quality of the denoised images. Paired t-test confirms the statistical significance of the higher PSNR values achieved by the proposed method as compared to the other counterpart techniques. The proposed method turned out to be very effective in denoising both high and low density noises present in (mammogram) images.


2012 ◽  
Vol 108 (3) ◽  
pp. 1062-1069 ◽  
Author(s):  
Nawazish Naveed ◽  
Ayyaz Hussain ◽  
M. Arfan Jaffar ◽  
Tae-Sun Choi

The work aims to detect and correct the noisy mammogram images corrupted by impulse noise. This is achieved in two phases – identification of noise-affected pixels and renovation of those pixels in an image. The pixels which are disturbed by impulse noise are identified by Bi-dimensional Empirical Mode Decomposition (Bid-EMD). The restoration of these pixels and noise removal are done by fast adaptive bilateral filter (fABF). The proposed work for impulse noise removal is examined on digital mammogram images of Digital Database for Screening Mammography (DDSM) database. The proposed approach is compared with other existing state-of-the-art schemes using peak signal to noise ratio (PSNR) and image enhancement factor (IEF) performance measures. The study of performance of the proposed scheme provides enhanced outcome than the other algorithms used for impulse noise removal.


Author(s):  
Jeniffer A ◽  
Haripasath S ◽  
Chinthamani S ◽  
Chitra G ◽  
Karthiga V

2008 ◽  
Vol 67 (14) ◽  
pp. 1247-1267
Author(s):  
V. V. Lukin ◽  
S. Peltonen ◽  
P. Ye. Yeltsov ◽  
S. K. Abramov ◽  
A. N. Besedin ◽  
...  

2019 ◽  
Vol 118 (7) ◽  
pp. 73-76
Author(s):  
Sharanabasappa ◽  
P Ravibabu

Nowadays, during the process of Image acquisition and transmission, image information data can be corrupted by impulse noise. That noise is classified as salt and pepper noise and random impulse noise depending on the noise values. A median filter is widely used digital nonlinear filter  in edge preservation, removing of impulse noise and smoothing of signals. Median filter is the widely used to remove salt and pepper noise than rank order filter, morphological filter, and unsharp masking filter. The median filter replaces a sample with the middle value among all the samples present inside the sample window. A median filter will be of two types depending on the number of samples processed at the same cycle i.e, bit level architecture and word level architecture.. In this paper, Carry Look-ahead Adder median filter method will be introduced to improve the hardware resources used in median filter architecture for 5 window and 9 window for 8 bit and 16 bit median filter architecture.


Sign in / Sign up

Export Citation Format

Share Document