edge preservation
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 63)

H-INDEX

13
(FIVE YEARS 4)

Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 35
Author(s):  
Xuru Li ◽  
Xueqin Sun ◽  
Yanbo Zhang ◽  
Jinxiao Pan ◽  
Ping Chen

Spectral computed tomography (CT) can divide collected photons into multi-energy channels and gain multi-channel projections synchronously by using photon-counting detectors. However, reconstructed images usually contain severe noise due to the limited number of photons in the corresponding energy channel. Tensor dictionary learning (TDL)-based methods have achieved better performance, but usually lose image edge information and details, especially from an under-sampling dataset. To address this problem, this paper proposes a method termed TDL with an enhanced sparsity constraint for spectral CT reconstruction. The proposed algorithm inherits the superiority of TDL by exploring the correlation of spectral CT images. Moreover, the method designs a regularization using the L0-norm of the image gradient to constrain images and the difference between images and a prior image in each energy channel simultaneously, further improving the ability to preserve edge information and subtle image details. The split-Bregman algorithm has been applied to address the proposed objective minimization model. Several numerical simulations and realistic preclinical mice are studied to assess the effectiveness of the proposed algorithm. The results demonstrate that the proposed method improves the quality of spectral CT images in terms of noise elimination, edge preservation, and image detail recovery compared to the several existing better methods.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 94
Author(s):  
Xiaozhen Ren ◽  
Yanwen Bai ◽  
Yingying Niu ◽  
Yuying Jiang

In order to solve the problems of long-term image acquisition time and massive data processing in a terahertz time domain spectroscopy imaging system, a novel fast terahertz imaging model, combined with group sparsity and nonlocal self-similarity (GSNS), is proposed in this paper. In GSNS, the structure similarity and sparsity of image patches in both two-dimensional and three-dimensional space are utilized to obtain high-quality terahertz images. It has the advantages of detail clarity and edge preservation. Furthermore, to overcome the high computational costs of matrix inversion in traditional split Bregman iteration, an acceleration scheme based on conjugate gradient method is proposed to solve the terahertz imaging model more efficiently. Experiments results demonstrate that the proposed approach can lead to better terahertz image reconstruction performance at low sampling rates.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Praveen Kumar Lendale ◽  
N.M. Nandhitha

PurposeSpeckle noise removal in ultrasound images is one of the important tasks in biomedical-imaging applications. Many filtering -based despeckling methods are discussed in many existing works. Two-dimensional (2-D) transforms are also used enormously for the reduction of speckle noise in ultrasound medical images. In recent years, many soft computing-based intelligent techniques have been applied to noise removal and segmentation techniques. However, there is a requirement to improve the accuracy of despeckling using hybrid approaches.Design/methodology/approachThe work focuses on double-bank anatomy with framelet transform combined with Gaussian filter (GF) and also consists of a fuzzy kind of clustering approach for despeckling ultrasound medical images. The presented transform efficiently rejects the speckle noise based on the gray scale relative thresholding where the directional filter group (DFB) preserves the edge information.FindingsThe proposed approach is evaluated by different performance indicators such as the mean square error (MSE), peak signal to noise ratio (PSNR) speckle suppression index (SSI), mean structural similarity and the edge preservation index (EPI) accordingly. It is found that the proposed methodology is superior in terms of all the above performance indicators.Originality/valueFuzzy kind clustering methods have been proved to be better than the conventional threshold methods for noise dismissal. The algorithm gives a reconcilable development as compared to other modern speckle reduction procedures, as it preserves the geometric features even after the noise dismissal.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mahmoud M. Khattab ◽  
Akram M. Zeki ◽  
Ali A. Alwan ◽  
Belgacem Bouallegue ◽  
Safaa S. Matter ◽  
...  

The primary goal of the multiframe super-resolution image reconstruction is to produce an image with a higher resolution by integrating information extracted from a set of corresponding images with low resolution, which is used in various fields. However, super-resolution image reconstruction approaches are typically affected by annoying restorative artifacts, including blurring, noise, and staircasing effect. Accordingly, it is always difficult to balance between smoothness and edge preservation. In this paper, we intend to enhance the efficiency of multiframe super-resolution image reconstruction in order to optimize both analysis and human interpretation processes by improving the pictorial information and enhancing the automatic machine perception. As a result, we propose new approaches that firstly rely on estimating the initial high-resolution image through preprocessing of the reference low-resolution image based on median, mean, Lucy-Richardson, and Wiener filters. This preprocessing stage is used to overcome the degradation present in the reference low-resolution image, which is a suitable kernel for producing the initial high-resolution image to be used in the reconstruction phase of the final image. Then, L2 norm is employed for the data-fidelity term to minimize the residual among the predicted high-resolution image and the observed low-resolution images. Finally, bilateral total variation prior model is utilized to restrict the minimization function to a stable state of the generated HR image. The experimental results of the synthetic data indicate that the proposed approaches have enhanced efficiency visually and quantitatively compared to other existing approaches.


2021 ◽  
Author(s):  
Jianjun Bao ◽  
Haibo Wang ◽  
Haixiang Li ◽  
Ke Luo ◽  
Xiaolin Shen

2021 ◽  
pp. 113-125
Author(s):  
K. Vidhya ◽  
T. R. Ganesh Babu ◽  
B. Thilakavathi ◽  
S. Poovizhi ◽  
P. Madhumathy

Author(s):  
Tae-Wuk Bae ◽  
Kee-Koo Kwon ◽  
Kyu-Hyung Kim

The characteristics or aspects of important fiducial points (FPs) in the electrocardiogram (ECG) signal are complicated because of various factors, such as non-stationary effects and low signal-to-noise ratio. Due to the various noises caused by the ECG signal measurement environment and by typical ECG signal deformation due to heart diseases, detecting such FPs becomes a challenging task. In this study, we introduce a novel PQRST complex detector using a one-dimensional bilateral filter (1DBF) and the temporal characteristics of FPs. The 1DBF with noise suppression and edge preservation preserves the P- or T-wave whereas it suppresses the QRS-interval. The 1DBF acts as a background predictor for predicting the background corresponding to the P- and T-waves and the remaining flat interval excluding the QRS-interval. The R-peak and QRS-interval are founded by the difference of the original ECG signal and the predicted background signal. Then, the Q- and S-points and the FPs related to the P- and T-wave are sequentially detected using the determined searching range and detection order based on the detected R-peak. The detection performance of the proposed method is analyzed through the MIT-BIH database (MIT-DB) and the QT database (QT-DB).


Chemosensors ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 268
Author(s):  
Le Zhang ◽  
Lixian Liu ◽  
Huiting Huan ◽  
Xukun Yin ◽  
Xueshi Zhang ◽  
...  

A non-local patch regression (NLPR) denoising-enhanced differential broadband photoacoustic (PA) sensor was developed for the high-sensitive detection of multiple trace gases. Using the edge preservation index (EPI) and signal-to-noise ratio (SNR) as a dual-criterion, the fluctuation was dramatically suppressed while the spectral absorption peaks were maintained by the introduction of a NLPR algorithm. The feasibility of the broadband framework was verified by measuring the C2H2 in the background of ambient air. A normalized noise equivalent absorption (NNEA) coefficient of 6.13 × 10−11 cm−1·W·Hz−1/2 was obtained with a 30-mW globar source and a SNR improvement factor of 23. Furthermore, the simultaneous multiple-trace-gas detection capability was determined by measuring C2H2, H2O, and CO2. Following the guidance of single-component processing, the NLPR processed results showed higher EPI and SNR compared to the spectra denoised by the wavelet method and the non-local means algorithm. The experimentally determined SNRs of the C2H2, H2O, and CO2 spectra were improved by a factor of 20. The NNEA coefficient reached a value of 7.02 × 10−11 cm−1·W·Hz−1/2 for C2H2. The NLPR algorithm presented good performance in noise suppression and absorption peak fidelity, which offered a higher dynamic range and was demonstrated to be an effective approach for trace gas analysis.


Sign in / Sign up

Export Citation Format

Share Document