A Predicted Mathematical Cancer Tumor Growth Model of Brain and Its Analytical Solution by Reduced Differential Transform Method

Author(s):  
Hemant Gandhi ◽  
Amit Tomar ◽  
Dimple Singh
Author(s):  
Muhammed Yiğider ◽  
Serkan Okur

In this study, solutions of time-fractional differential equations that emerge from science and engineering have been investigated by employing reduced differential transform method. Initially, the definition of the derivatives with fractional order and their important features are given. Afterwards, by employing the Caputo derivative, reduced differential transform method has been introduced. Finally, the numerical solutions of the fractional order Murray equation have been obtained by utilizing reduced differential transform method and results have been compared through graphs and tables. Keywords: Time-fractional differential equations, Reduced differential transform methods, Murray equations, Caputo fractional derivative.


2011 ◽  
Vol 110-116 ◽  
pp. 4532-4536 ◽  
Author(s):  
K. Torabi ◽  
J. Nafar Dastgerdi ◽  
S. Marzban

In this paper, free vibration differential equations of cracked beam are solved by using differential transform method (DTM) that is one of the numerical methods for ordinary and partial differential equations. The Euler–Bernoulli beam model is proposed to study the frequency factors for bending vibration of cracked beam with ant symmetric boundary conditions (as one end is clamped and the other is simply supported). The beam is modeled as two segments connected by a rotational spring located at the cracked section. This model promotes discontinuities in both vertical displacement and rotational due to bending. The differential equations for the free bending vibrations are established and then solved individually for each segment with the corresponding boundary conditions and the appropriated compatibility conditions at the cracked section by using DTM and analytical solution. The results show that DTM provides simple method for solving equations and the results obtained by DTM converge to the analytical solution with much more accurate for both shallow and deep cracks. This study demonstrates that the differential transform is a feasible tool for obtaining the analytical form solution of free vibration differential equation of cracked beam with simple expression.


2021 ◽  
Vol 5 (4) ◽  
pp. 168
Author(s):  
Salah Abuasad ◽  
Saleh Alshammari ◽  
Adil Al-rabtah ◽  
Ishak Hashim

In this study, exact and approximate solutions of higher-dimensional time-fractional diffusion equations were obtained using a relatively new method, the fractional reduced differential transform method (FRDTM). The exact solutions can be found with the benefit of a special function, and we applied Caputo fractional derivatives in this method. The numerical results and graphical representations specified that the proposed method is very effective for solving fractional diffusion equations in higher dimensions.


Sign in / Sign up

Export Citation Format

Share Document