differential transform method
Recently Published Documents


TOTAL DOCUMENTS

487
(FIVE YEARS 125)

H-INDEX

42
(FIVE YEARS 4)

Foundations ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 6-19
Author(s):  
Neelma ◽  
Eiman ◽  
Kamal Shah

This current work is devoted to develop qualitative theory of existence of solution to some families of fractional order differential equations (FODEs). For this purposes we utilize fixed point theory due to Banach and Schauder. Further using differential transform method (DTM), we also compute analytical or semi-analytical results to the proposed problems. Also by some proper examples we demonstrate the results.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Asia Yasmin ◽  
◽  
Kashif Ali ◽  
Muhammad Ashraf ◽  
◽  
...  

In the present investigation, we consider the heat and mass transfer characteristics of steady, incompressible and electrically conducting Casson fluid flow in a channel. The effect of chemical reactions have also been considered. The differential transform method (DTM) is applied to a system of non-linear ODEs, and the results are obtained in the form of DTM series. The principal gain of this approach is that it applies to the non-linear ODEs without requiring any discretization, linearization or perturbation. The velocity, mass and heat transfer profiles thus obtained are in good agreement with those provided by the quasi-linearization method (QLM). Graphical results for velocity, concentration and temperature fields are presented for a certain range of values of the governing parameters.


2021 ◽  
Vol 5 (4) ◽  
pp. 168
Author(s):  
Salah Abuasad ◽  
Saleh Alshammari ◽  
Adil Al-rabtah ◽  
Ishak Hashim

In this study, exact and approximate solutions of higher-dimensional time-fractional diffusion equations were obtained using a relatively new method, the fractional reduced differential transform method (FRDTM). The exact solutions can be found with the benefit of a special function, and we applied Caputo fractional derivatives in this method. The numerical results and graphical representations specified that the proposed method is very effective for solving fractional diffusion equations in higher dimensions.


2021 ◽  
Vol 5 (4) ◽  
pp. 166
Author(s):  
Shahram Rezapour ◽  
Brahim Tellab ◽  
Chernet Tuge Deressa ◽  
Sina Etemad ◽  
Kamsing Nonlaopon

This paper is devoted to generalizing the standard system of Navier boundary value problems to a fractional system of coupled sequential Navier boundary value problems by using terms of the Caputo derivatives. In other words, for the first time, we design a multi-term fractional coupled system of Navier equations under the fractional boundary conditions. The existence theory is studied regarding solutions of the given coupled sequential Navier boundary problems via the Krasnoselskii’s fixed-point theorem on two nonlinear operators. Moreover, the Banach contraction principle is applied to investigate the uniqueness of solution. We then focus on the Hyers–Ulam-type stability of its solution. Furthermore, the approximate solutions of the proposed coupled fractional sequential Navier system are obtained via the generalized differential transform method. Lastly, the results of this research are supported by giving simulated examples.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1793
Author(s):  
Ganeshappa Sowmya ◽  
Ioannis E. Sarris ◽  
Chandra Sen Vishalakshi ◽  
Ravikumar Shashikala Varun Kumar ◽  
Ballajja Chandrappa Prasannakumara

The transient temperature distribution through a convective-radiative moving rod with temperature-dependent internal heat generation and non-linearly varying temperature-dependent thermal conductivity is elaborated in this investigation. Symmetries are intrinsic and fundamental features of the differential equations of mathematical physics. The governing energy equation subjected to corresponding initial and boundary conditions is non-dimensionalized into a non-linear partial differential equation (PDE) with the assistance of relevant non-dimensional terms. Then the resultant non-dimensionalized PDE is solved analytically using the two-dimensional differential transform method (2D DTM) and multivariate Pade approximant. The consequential impact of non-dimensional parameters such as heat generation, radiative, temperature ratio, and conductive parameters on dimensionless transient temperature profiles has been scrutinized through graphical elucidation. Furthermore, these graphs indicate the deviations in transient thermal profile for both finite difference method (FDM) and 2D DTM-multivariate Pade approximant by considering the forced convective and nucleate boiling heat transfer mode. The results reveal that the transient temperature profile of the moving rod upsurges with the change in time, and it improves for heat generation parameter. It enriches for the rise in the magnitude of Peclet number but drops significantly for greater values of the convective-radiative and convective-conductive parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ahmed Hussein Msmali ◽  
A. M. Alotaibi ◽  
M. A. El-Moneam ◽  
Badr S. Badr ◽  
Abdullah Ali H. Ahmadini

In this study, we develop the differential transform method in a new scheme to solve systems of first-order differential equations. The differential transform method is a procedure to obtain the coefficients of the Taylor series of the solution of differential and integral equations. So, one can obtain the Taylor series of the solution of an arbitrary order, and hence, the solution of the given equation can be obtained with required accuracy. Here, we first give some basic definitions and properties of the differential transform method, and then, we prove some theorems for solving the linear systems of first order. Then, these theorems of our system are converted to a system of linear algebraic equations whose unknowns are the coefficients of the Taylor series of the solution. Finally, we give some examples to show the accuracy and efficiency of the presented method.


Sign in / Sign up

Export Citation Format

Share Document