Edge Intelligence-Based Object Detection System Using Neural Compute Stick for Visually Impaired People

Author(s):  
Aditi Khandewale ◽  
Vinaya Gohokar ◽  
Pooja Nawandar
Author(s):  
Raghad Raied Mahmood Et al.

It is relatively simple for a normal human to interpret and understand every banknote, but one of the major problems for visually impaired people are money recognition, especially for paper currency. Since money plays such an important role in our everyday lives and is required for every business transaction, real-time detection and recognition of banknotes become a necessity for blind or visually impaired people For that purpose, we propose a real-time object detection system to help visually impaired people in their daily business transactions. Dataset Images of the Iraqi banknote category are collected in different conditions initially and then, these images are augmented with different geometric transformations, to make the system strong. These augmented images are then annotated manually using the "LabelImg" program, from which training sets and validation image sets are prepared. We will use YOLOv3 real-time Object Detection algorithm trained on custom Iraqi banknote dataset for detection and recognition of banknotes. Then the label of the banknotes is identified and then converted into audio by using Google Text to Speech (gTTS), which will be the expected output. The performance of the trained model is evaluated on a test dataset and real-time live video. The test results demonstrate that the proposed method can detect and recognize Iraqi paper money with high mAP reaches 97.405% and a short time.


Author(s):  
Fereshteh S. Bashiri ◽  
Eric LaRose ◽  
Jonathan C. Badger ◽  
Roshan M. D’Souza ◽  
Zeyun Yu ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 941
Author(s):  
Rakesh Chandra Joshi ◽  
Saumya Yadav ◽  
Malay Kishore Dutta ◽  
Carlos M. Travieso-Gonzalez

Visually impaired people face numerous difficulties in their daily life, and technological interventions may assist them to meet these challenges. This paper proposes an artificial intelligence-based fully automatic assistive technology to recognize different objects, and auditory inputs are provided to the user in real time, which gives better understanding to the visually impaired person about their surroundings. A deep-learning model is trained with multiple images of objects that are highly relevant to the visually impaired person. Training images are augmented and manually annotated to bring more robustness to the trained model. In addition to computer vision-based techniques for object recognition, a distance-measuring sensor is integrated to make the device more comprehensive by recognizing obstacles while navigating from one place to another. The auditory information that is conveyed to the user after scene segmentation and obstacle identification is optimized to obtain more information in less time for faster processing of video frames. The average accuracy of this proposed method is 95.19% and 99.69% for object detection and recognition, respectively. The time complexity is low, allowing a user to perceive the surrounding scene in real time.


Sign in / Sign up

Export Citation Format

Share Document