Social Network Propagation Mechanism and Online User Behavior Analysis

Author(s):  
Xun Liang
2013 ◽  
Vol 392 (7) ◽  
pp. 1712-1723 ◽  
Author(s):  
Qiang Yan ◽  
Lianren Wu ◽  
Lan Zheng

2020 ◽  
Vol 39 (4) ◽  
pp. 4971-4979
Author(s):  
Xiaoxian Wen ◽  
Yunhui Ma ◽  
Jiaxin Fu ◽  
Jing Li

In order to improve the ability of social network user behavior analysis and scenario pattern prediction, optimize social network construction, combine data mining and behavior analysis methods to perform social network user characteristic analysis and user scenario pattern optimization mining, and discover social network user behavior characteristics. Design multimedia content recommendation algorithms in multimedia social networks based on user behavior patterns. The current existing recommendation systems do not know how much the user likes the currently viewed content before the user scores the content or performs other operations, and the user’s preference may change at any time according to the user’s environment and the user’s identity, Usually in multimedia social networks, users have their own grading habits, or users’ ratings may be casual. Cluster-based algorithm, as an application of cluster analysis, based on clustering, the algorithm can predict the next position of the user. Because the algorithm has a “cold start”, it is suitable for new users without trajectories. You can also make predictions. In addition, the algorithm also considers the user’s feedback information, and constructs a scoring system, which can optimize the results of location prediction through iteration. The simulation results show that the accuracy of social network user scenario prediction using this method is higher, the accuracy of feature registration of social network user scenario mode is improved, and the real-time performance of algorithm processing is better.


Author(s):  
Fuxin Ren ◽  
Zhongbao Zhang ◽  
Jiawei Zhang ◽  
Sen Su ◽  
Li Sun ◽  
...  

Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users’ behavior information during the aligning procedure and thus still suffer from the poor learning performance. In fact, we observe that social network alignment and behavior analysis can benefit from each other. Motivated by such an observation, we propose to jointly study the social network alignment problem and user behavior analysis problem. We design a novel end-to-end framework named BANANA. In this framework, to leverage behavior analysis for social network alignment at the distribution level, we design an earth mover’s distance based alignment model to fuse users’ behavior information for more comprehensive user representations. To further leverage social network alignment for behavior analysis, in turn, we design a temporal graph neural network model to fuse behavior information in different social networks based on the alignment result. Two models above can work together in an end-to-end manner. Through extensive experiments on real-world datasets, we demonstrate that our proposed approach outperforms the state-of-the-art methods in the social network alignment task and the user behavior analysis task, respectively.


Sign in / Sign up

Export Citation Format

Share Document