Image Interpolation Using Non-adaptive Scaling Algorithms for Multimedia Applications—A Survey

Author(s):  
C. H. Neetha ◽  
C. John Moses ◽  
D. Selvathi
Author(s):  
Sumek WISAYATAKSIN ◽  
Dongju LI ◽  
Tsuyoshi ISSHIKI ◽  
Hiroaki KUNIEDA

Author(s):  
Golokesh Santra ◽  
Nitai Sylvetsky ◽  
Gershom Martin

We present a family of minimally empirical double-hybrid DFT functionals parametrized against the very large and diverse GMTKN55 benchmark. The very recently proposed wB97M(2) empirical double hybrid (with 16 empirical parameters) has the lowest WTMAD2 (weighted mean absolute deviation over GMTKN55) ever reported at 2.19 kcal/mol. However, our xrevDSD-PBEP86-D4 functional reaches a statistically equivalent WTMAD2=2.22 kcal/mol, using just a handful of empirical parameters, and the xrevDOD-PBEP86-D4 functional reaches 2.25 kcal/mol with just opposite-spin MP2 correlation, making it amenable to reduced-scaling algorithms. In general, the D4 empirical dispersion correction is clearly superior to D3BJ. If one eschews dispersion corrections of any kind, noDispSD-SCAN offers a viable alternative. Parametrization over the entire GMTKN55 dataset yields substantial improvement over the small training set previously employed in the DSD papers.


2019 ◽  
Author(s):  
Golokesh Santra ◽  
Nitai Sylvetsky ◽  
Gershom Martin

We present a family of minimally empirical double-hybrid DFT functionals parametrized against the very large and diverse GMTKN55 benchmark. The very recently proposed wB97M(2) empirical double hybrid (with 16 empirical parameters) has the lowest WTMAD2 (weighted mean absolute deviation over GMTKN55) ever reported at 2.19 kcal/mol. However, our xrevDSD-PBEP86-D4 functional reaches a statistically equivalent WTMAD2=2.22 kcal/mol, using just a handful of empirical parameters, and the xrevDOD-PBEP86-D4 functional reaches 2.25 kcal/mol with just opposite-spin MP2 correlation, making it amenable to reduced-scaling algorithms. In general, the D4 empirical dispersion correction is clearly superior to D3BJ. If one eschews dispersion corrections of any kind, noDispSD-SCAN offers a viable alternative. Parametrization over the entire GMTKN55 dataset yields substantial improvement over the small training set previously employed in the DSD papers.


Author(s):  
Rajesh Kumar Verma ◽  
Chhabi Rani Panigrahi ◽  
Bibudhendu Pati ◽  
Joy Lal Sarkar

Background & Objective: Multimedia aggregates various types of media such as audio, video, images, animations, etc., to form a rich media content which produces an everlasting effect in the minds of the people. Methods: In order to process multimedia applications using mobile devices, we encounter a big challenge as these devices have limited resources and power. To address these limitations, in this work, we have proposed an efficient approach named as mMedia, wherein multimedia applications will utilize the multi cloud environment using Mobile Cloud Computing (MCC), for faster processing. The proposed approach selects the best available network. The authors have also considered using the Lyapunov optimization technique for efficient transmission between the mobile device and the cloud. Results: The simulation results indicate that mMedia can be useful for various multimedia applications by considering the energy delay tradeoff decision. Conclusion: The results have been compared alongside the base algorithm SALSA on the basis of different parameters like time average queue backlog, delay and time average utility and indicate that the mMedia outperforms in all the aspects.


Sign in / Sign up

Export Citation Format

Share Document