interpolation techniques
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 75)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Vol 7 (12) ◽  
pp. 117497-117506
Author(s):  
Fernanda Cristina Araujo ◽  
Eloy Lemos De Mello ◽  
Bruno Bonemberguer Da Silva ◽  
Erivelto Mercante ◽  
Gisele Maria Golin

Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 11
Author(s):  
Denis R. Boudreau ◽  
Gaétan Moreau

Spatial and scale effects have barely been considered in forensic entomology, despite their pervasive influence on most of the parameters affecting the development of insect larval stages and the progression of insect succession on cadavers. Here, we used smoothing/interpolation techniques and semivariograms to document the spatial dynamics of sarcosaprophageous Calliphoridae, an important forensic taxon, in the Greater Moncton area in New Brunswick, Canada. Results indicated that the spatial dynamics of Calliphoridae differed between species, some species showing strong patterns of regional aggregation while others did not. Multivariate spatial correlations indicated that interspecific relationships in space varied widely, ranging from local and large-scale aggregation to spatial anticorrelation between species. Overall, this study suggested that even within a restricted timescale, the spatial dynamics of Calliphoridae can operate at many scales, manifest in different patterns, and be attributed to multiple different causes. We stress that forensic entomology has much to benefit from the use of spatial analysis because many important forensic questions, both at the fundamental and practical levels, require a spatial solution.


2021 ◽  
Vol 19 ◽  
pp. 59-70
Author(s):  
Oliver Griebel ◽  
Uwe Wasenmüller ◽  
Norbert Wehn

Abstract. Carrier synchronization is a crucial part of any wireless receiver, which is required due to frequency and phase offset. In case of transmission in a Time Division Multiple Access system the carrier synchronization has to be carried out for every burst separately. The DVB-RCS2 standard specifies a large variety of reference burst types with very limited known symbols. For each of these types a thorough exploration of different synchronization algorithms is required to find a trade-off between a good communication performance at very low Signal to Noise Ratio (SNR) and an efficient hardware implementation. A state-of-the-art algorithm for carrier synchronization is based on the so called Fast Fourier Transformation (FFT). An inherit limitation for the precision of frequency estimation is given by the FFT point size. To counteract this limitation, the FFT point size must be increased. In this paper we extensively compare two possible interpolation techniques for FFT results in three FFT-based carrier synchronization methods. These are applied to various reference burst types specified in the DVB-RCS2 standard. The trade-offs of these combinations are identified with a special focus on hardware implementation efficiency. Furthermore, we present a flexible IP core which can process the three synchronization methods in an efficient way and analyze its implementation complexity and throughput on a Xilinx Kintex FPGA.


Author(s):  
Kelachi P. Enwere ◽  
Uchenna P. Ogoke

Aims: The Study seeks to determine the relationship that exists among Continuous Probability Distributions and the use of Interpolation Techniques to estimate unavailable but desired value of a given probability distribution. Study Design: Statistical Probability tables for Normal, Student t, Chi-squared, F and Gamma distributions were used to compare interpolated values with statistical tabulated values. Charts and Tables were used to represent the relationships among the five probability distributions. Methodology: Linear Interpolation Technique was employed to interpolate unavailable but desired values so as to obtain approximate values from the statistical tables. The data were analyzed for interpolation of unavailable but desired values at 95% a-level from the five continuous probability distribution. Results: Interpolated values are as close as possible to the exact values and the difference between the exact value and the interpolated value is not pronounced. The table and chart established showed that relationships do exist among the Normal, Student-t, Chi-squared, F and Gamma distributions. Conclusion: Interpolation techniques can be applied to obtain unavailable but desired information in a data set. Thus, uncertainty found in a data set can be discovered, then analyzed and interpreted to produce desired results. However, understanding of how these probability distributions are related to each other can inform how best these distributions can be used interchangeably by Statisticians and other Researchers who apply statistical methods employed in practical applications.


MAUSAM ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 41-50
Author(s):  
MADHURIMA DAS ◽  
ARNAB HAZRA ◽  
ADITI SARKAR ◽  
SABYASACHI BHATTACHARYA ◽  
PABITRA BANIK

Rainfall is one of the most eloquently researched contemporary meteorological phenomena affecting the agricultural practices dramatically, particularly along the humid, sub-tropics, where agriculture is predominantly rainfed. It is a key parameter of agricultural production in West Bengal due to lack irrigation facilities in most of the areas. Thus, it is very important to have detailed information of rainfall distribution pattern of West Bengal. In practice rainfall data is collected only at few discrete stations scattered all over the whole state. However, rainfall is a spatially continuous phenomenon rather than discrete. Thus it becomes essential to apply a robust spatial interpolation technique to transform the discrete values into a continuous spatial pattern. In the present study, three spatial interpolation techniques namely Kriging, Inverse Distance Weighted (IDW) and SPLINE, are used for a comparative analysis to identify the most efficient interpolation technique. Weekly average rainfall data available between 1901 and 1985 for 19 standard meteorological weeks (SMW), Week 22 to Week 40 are used for the analysis. The errors of the three interpolation techniques are analyzed and the best method is chosen based on the minimum mean absolute deviation (MAD) and the minimum mean squared deviation (MSD) criteria. The IDW method is found to be the best spatial interpolation technique.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3113
Author(s):  
Pakorn Ditthakit ◽  
Sarayod Nakrod ◽  
Naunwan Viriyanantavong ◽  
Abebe Debele Tolche ◽  
Quoc Bao Pham

This research aims to estimate baseflow (BF) and baseflow index (BFI) in ungauged basins in the southern part of Thailand. Three spatial interpolation methods (namely, inverse distance weighting (IDW), kriging, and spline) were utilized and compared in regard to their performance. Two baseflow separation methods, i.e., the local minimum method (LM) and the Eckhardt filter method (EF), were investigated. Runoff data were collected from 65 runoff stations. These runoff stations were randomly selected and divided into two parts: 75% and 25% for the calibration and validation stages, respectively, with a total of 36 study cases. Four statistical indices including mean absolute error (MAE), root mean squared error (RMSE), correlation coefficient (r), and combined accuracy (CA), were applied for the performance evaluation. The findings revealed that monthly and annual BF and BFI calculated by EF were mostly lower than those calculated by LM. Furthermore, IDW gave the best performance among the three spatial interpolation techniques by providing the highest r-value and the lowest MAE, RMSE, and CA values for both the calibration and validation stages, followed by kriging and spline, respectively. We also provided monthly and annual BF and BFI maps to benefit water resource management.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012066
Author(s):  
Shreesh Parvatikar ◽  
Kamal Khemani ◽  
Pradeep Kumar

Abstract Three test cases in the categories of homogeneous non-isothermal, non-homogeneous isothermal and non-homogeneous non-isothermal have been developed to validate the two-dimensional interpolation technique for calculation of non-gray radiative heat flux on the walls of the system. The participating gases H 2 O and CO 2 of different mole fractions and temperatures are considered in different zones of the test cases. HITEMP-2010 database has been used to calculate the absorption coefficients of H 2 O and CO 2 at different mole fractions and temperatures. Further, the random variation of absorption coefficients with spectrum has been reordered in smooth monotonically increasing smooth function using full spectrum k-distribution method (FSK). A look-up table is developed for different mole fractions and temperatures of gases H 2 O and CO 2. The calculation of absorption coefficients at thermodynamic states other than look up table has been performed using two dimensional interpolation techniques. The geometry of test cases have been divided into three zones whose conditions on the first and last zones are same as available in look-up table while interpolation is used for the middle zone. The radiative transfer equation is solved numerically by finite volume discrete ordinate method (FVDOM). The results have been compared with FSK method and have been found that interpolation techniques are giving satisfactory results with extremely less computational resource and time.


2021 ◽  
Vol 114 (sp1) ◽  
Author(s):  
Van Men Huynh ◽  
Sunghoon Hong ◽  
Yongju Kwon ◽  
Van Ty Tran ◽  
Vuong Thu Minh Huynh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document