image scaling
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 36)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Simón Marín Giraldo ◽  
Julian David Ramirez Lopera ◽  
Mauricio Toro ◽  
Andres Salazar Galeano

This work introduces some of the most widely usedcompression algorithms, and their relevance to the field oflivestock farming, which has been historically characterizedfor requiring menial and inefficient labor, introducingenvironmental. And also for lacking the scale andautomation that cutting edge technologies can provide. Bydoing this we will explain how this opens the door tolocations untouched by technology, and the generaladvantages, and possibilities that integrating patternrecognition models bring to the table. In addition, we willexplain the ins and outs of these compression algorithms,and our reasoning behind our decision to choose analgorithm to implement in our pattern recognition model.To solve this problem, Seam Carving, Image Scaling andRun-Length encoding were used. With them we compressedthe images an average of 17.5% of their original size in atime complexity of O(L*N*M). This research shows howyou can create an efficient compression algorithm for usagein PLF.


2021 ◽  
Author(s):  
Meiyu Xu ◽  
Dayong Lu ◽  
Xiaoyun Sun

Abstract In the past few decades, quantum computation has become increasingly attractivedue to its remarkable performance. Quantum image scaling is considered a common geometric transformation in quantum image processing, however, the quantum floating-point data version of which does not exist. Is there a corresponding scaling for 2-D and 3-D floating-point data? The answer is yes.In this paper, we present quantum scaling up and down scheme for floating-point data by using trilinear interpolation method in 3-D space. This scheme offers better performance (in terms of the precision of floating-point numbers) for realizing the quantum floating-point algorithms compared to previously classical approaches. The Converter module we proposed can solve the conversion of fixed-point numbers to floating-point numbers of arbitrary size data with p + q qubits based on IEEE-754 format, instead of 32-bit single-precision, 64-bit double precision or 128-bit extended-precision. Usually, we use nearest neighbor interpolation and bilinear interpolation to achieve quantum image scaling algorithms, which are not applicable in high-dimensional space. This paper proposes trilinear interpolation of floating-point numbers in 3-D space to achieve quantum algorithms of scaling up and down for 3-D floating-point data. Finally, the circuits of quantum scaling up and down for 3-D floating-point data are designed.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Osamah Ibrahim Khalaf ◽  
Carlos Andrés Tavera Romero ◽  
A. Azhagu Jaisudhan Pazhani ◽  
G. Vinuja

This study implements the VLSI architecture for nonlinear-based picture scaling that is minimal in complexity and memory efficient. Image scaling is used to increase or decrease the size of an image in order to map the resolution of different devices, particularly cameras and printers. Larger memory and greater power are also necessary to produce high-resolution photographs. As a result, the goal of this project is to create a memory-efficient low-power image scaling methodology based on the effective weighted median interpolation methodology. Prefiltering is employed in linear interpolation scaling methods to improve the visual quality of the scaled image in noisy environments. By decreasing the blurring effect, the prefilter performs smoothing and sharpening processes to produce high-quality scaled images. Despite the fact that prefiltering requires more processing resources, the suggested solution scales via effective weighted median interpolation, which reduces noise intrinsically. As a result, a low-cost VLSI architecture can be created. The results of simulations reveal that the effective weighted median interpolation outperforms other existing approaches.


2021 ◽  
Vol 76 ◽  
pp. 103516
Author(s):  
Guangyu Liu ◽  
Bao Zhou ◽  
Yi Huang ◽  
Longfei Wang ◽  
Wei Wang ◽  
...  

Author(s):  
Bedeuro Kim ◽  
Alsharif Abuadbba ◽  
Yansong Gao ◽  
Yifeng Zheng ◽  
Muhammad Ejaz Ahmed ◽  
...  
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3263
Author(s):  
Jimin Yu ◽  
Wei Zhang

To solve the problems of low accuracy, low real-time performance, poor robustness and others caused by the complex environment, this paper proposes a face mask recognition and standard wear detection algorithm based on the improved YOLO-v4. Firstly, an improved CSPDarkNet53 is introduced into the trunk feature extraction network, which reduces the computing cost of the network and improves the learning ability of the model. Secondly, the adaptive image scaling algorithm can reduce computation and redundancy effectively. Thirdly, the improved PANet structure is introduced so that the network has more semantic information in the feature layer. At last, a face mask detection data set is made according to the standard wearing of masks. Based on the object detection algorithm of deep learning, a variety of evaluation indexes are compared to evaluate the effectiveness of the model. The results of the comparations show that the mAP of face mask recognition can reach 98.3% and the frame rate is high at 54.57 FPS, which are more accurate compared with the exiting algorithm.


Sensor Review ◽  
2021 ◽  
Vol 41 (1) ◽  
pp. 16-34
Author(s):  
Sathies Kumar Thangarajan ◽  
Arun Chokkalingam

Purpose The purpose of this paper is to develop an efficient brain tumor detection model using the beneficial concept of hybrid classification using magnetic resonance imaging (MRI) images Brain tumors are the most familiar and destructive disease, resulting to a very short life expectancy in their highest grade. The knowledge and the sudden progression in the area of brain imaging technologies have perpetually ready for an essential role in evaluating and concentrating the novel perceptions of brain anatomy and operations. The system of image processing has prevalent usage in the part of medical science for enhancing the early diagnosis and treatment phases. Design/methodology/approach The proposed detection model involves five main phases, namely, image pre-processing, tumor segmentation, feature extraction, third-level discrete wavelet transform (DWT) extraction and detection. Initially, the input MRI image is subjected to pre-processing using different steps called image scaling, entropy-based trilateral filtering and skull stripping. Image scaling is used to resize the image, entropy-based trilateral filtering extends to eradicate the noise from the digital image. Moreover, skull stripping is done by Otsu thresholding. Next to the pre-processing, tumor segmentation is performed by the fuzzy centroid-based region growing algorithm. Once the tumor is segmented from the input MRI image, feature extraction is done, which focuses on the first-order and higher-order statistical measures. In the detection side, a hybrid classifier with the merging of neural network (NN) and convolutional neural network (CNN) is adopted. Here, NN takes the first-order and higher-order statistical measures as input, whereas CNN takes the third level DWT image as input. As an improvement, the number of hidden neurons of both NN and CNN is optimized by a novel meta-heuristic algorithm called Crossover Operated Rooster-based Chicken Swarm Optimization (COR-CSO). The AND operation of outcomes obtained from both optimized NN and CNN categorizes the input image into two classes such as normal and abnormal. Finally, a valuable performance evaluation will prove that the performance of the proposed model is quite good over the entire existing model. Findings From the experimental results, the accuracy of the suggested COR-CSO-NN + CNN was seemed to be 18% superior to support vector machine, 11.3% superior to NN, 22.9% superior to deep belief network, 15.6% superior to CNN and 13.4% superior to NN + CNN, 11.3% superior to particle swarm optimization-NN + CNN, 9.2% superior to grey wolf optimization-NN + CNN, 5.3% superior to whale optimization algorithm-NN + CNN and 3.5% superior to CSO-NN + CNN. Finally, it was concluded that the suggested model is superior in detecting brain tumors effectively using MRI images. Originality/value This paper adopts the latest optimization algorithm called COR-CSO to detect brain tumors using NN and CNN. This is the first study that uses COR-CSO-based optimization for accurate brain tumor detection.


Sign in / Sign up

Export Citation Format

Share Document