Implementation of Particle Swarm Optimization to Evaluate Single-Stage Impulse Generator Circuit Parameters

Author(s):  
G. Ramarao ◽  
N. Jayaram ◽  
P. Ram Mohan Naidu ◽  
A. Vamsi ◽  
M. Krishna Prasad ◽  
...  
2006 ◽  
Vol 2006 ◽  
pp. 1-17 ◽  
Author(s):  
M. Senthil Arumugam ◽  
M. V. C. Rao

This paper presents an alternative and efficient method for solving the optimal control of single-stage hybrid manufacturing systems which are composed with two different categories: continuous dynamics and discrete dynamics. Three different inertia weights, a constant inertia weight (CIW), time-varying inertia weight (TVIW), and global-local best inertia weight (GLbestIW), are considered with the particle swarm optimization (PSO) algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated individually with the three inertia weights separately to compute the optimal control of the single-stage hybrid manufacturing system, and it is observed that the PSO with the proposed inertia weight yields better result in terms of both optimal solution and faster convergence. Added to this, the optimal control problem is also solved through real coded genetic algorithm (RCGA) and the results are compared with the PSO algorithms. A typical numerical example is also included in this paper to illustrate the efficacy and betterment of the proposed algorithm. Several statistical analyses are carried out from which can be concluded that the proposed method is superior to all the other methods considered in this paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Tad Gonsalves ◽  
Akira Egashira

The particle swarm optimization (PSO) is a recently invented evolutionary computation technique which is gaining popularity owing to its simplicity in implementation and rapid convergence. In the case of single-peak functions, PSO rapidly converges to the peak; however, in the case of multimodal functions, the PSO particles are known to get trapped in the local optima. In this paper, we propose a variation of the algorithm called parallel swarms oriented particle swarm optimization (PSO-PSO) which consists of a multistage and a single stage of evolution. In the multi-stage of evolution, individual subswarms evolve independently in parallel, and in the single stage of evolution, the sub-swarms exchange information to search for the global-best. The two interweaved stages of evolution demonstrate better performance on test functions, especially of higher dimensions. The attractive feature of the PSO-PSO version of the algorithm is that it does not introduce any new parameters to improve its convergence performance. The strategy maintains the simple and intuitive structure as well as the implemental and computational advantages of the basic PSO.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


2012 ◽  
Vol 3 (4) ◽  
pp. 1-4
Author(s):  
Diana D.C Diana D.C ◽  
◽  
Joy Vasantha Rani.S.P Joy Vasantha Rani.S.P ◽  
Nithya.T.R Nithya.T.R ◽  
Srimukhee.B Srimukhee.B

Sign in / Sign up

Export Citation Format

Share Document