Minimal Residual Based Iterative Methods and Its Parallel Implementation for Sparse Linear Systems

Author(s):  
Jiang Liu ◽  
Jin Wang
2012 ◽  
Vol 20 (3) ◽  
pp. 241-255 ◽  
Author(s):  
Eric Bavier ◽  
Mark Hoemmen ◽  
Sivasankaran Rajamanickam ◽  
Heidi Thornquist

Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples the algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.


2017 ◽  
Vol 24 (3) ◽  
pp. e2088 ◽  
Author(s):  
Michele Benzi ◽  
Thomas M. Evans ◽  
Steven P. Hamilton ◽  
Massimiliano Lupo Pasini ◽  
Stuart R. Slattery

2021 ◽  
Vol 293 ◽  
pp. 02013
Author(s):  
Jinmei Wang ◽  
Lizi Yin ◽  
Ke Wang

Solving dense linear systems of equations is quite time consuming and requires an efficient parallel implementation on powerful supercomputers. Du, Zheng and Wang presented some new iterative methods for linear systems [Journal of Applied Analysis and Computation, 2011, 1(3): 351-360]. This paper shows that their methods are suitable for solving dense linear system of equations, compared with the classical Jacobi and Gauss-Seidel iterative methods.


Sign in / Sign up

Export Citation Format

Share Document