sparse linear systems
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 24)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Vol 11 (24) ◽  
pp. 11814
Author(s):  
Guilherme C. Duran ◽  
André K. Sato ◽  
Edson K. Ueda ◽  
Rogério Y. Takimoto ◽  
Hossein G. Bahabadi ◽  
...  

This paper represents how typical advanced engineering design can be structured using a set of parameters and objective functions corresponding to the nature of the problem. The set of parameters can be in different types, including integer, real, cyclic, combinatorial, interval, etc. Similarly, the objective function can be presented in various types including integer (discrete), float, and interval. The simulated annealing with crystallization heuristic can deal with all these combinations of parameters and objective functions when the crystallization heuristic presents a sensibility for real parameters. Herein, simulated annealing with the crystallization heuristic is enhanced by combining Bates and Gaussian distributions and by incorporating feedback strategies to emphasize exploration or refinement, or a combination of the two. The problems that are studied include solving an electrical impedance tomography problem with float parameters and a partially evaluated objective function represented by an interval requiring the solution of 32 sparse linear systems defined by the finite element method, as well as an airplane design problem with several parameters and constraints used to reduce the explored domain. The combination of the proposed feedback strategies and simulated annealing with the crystallization heuristic is compared with existing simulated annealing algorithms and their benchmark results are shown. The enhanced simulated annealing approach proposed herein showed better results for the majority of the studied cases.


2021 ◽  
Author(s):  
Vasileios Kalantzis ◽  
Anshul Gupta ◽  
Lior Horesh ◽  
Tomasz Nowicki ◽  
Mark S. Squillante ◽  
...  

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Ernesto Dufrechou

Many problems, in diverse areas of science and engineering, involve the solution of largescale sparse systems of linear equations. In most of these scenarios, they are also a computational bottleneck, and therefore their efficient solution on parallel architectureshas motivated a tremendous volume of research.This dissertation targets the use of GPUs to enhance the performance of the solution of sparse linear systems using iterative methods complemented with state-of-the-art preconditioned techniques. In particular, we study ILUPACK, a package for the solution of sparse linear systems via Krylov subspace methods that relies on a modern inverse-based multilevel ILU (incomplete LU) preconditioning technique.We present new data-parallel versions of the preconditioner and the most important solvers contained in the package that significantly improve its performance without affecting its accuracy. Additionally we enhance existing task-parallel versions of ILUPACK for shared- and distributed-memory systems with the inclusion of GPU acceleration. The results obtained show a sensible reduction in the runtime of the methods, as well as the possibility of addressing large-scale problems efficiently.


Sign in / Sign up

Export Citation Format

Share Document