sparse matrix
Recently Published Documents


TOTAL DOCUMENTS

1942
(FIVE YEARS 357)

H-INDEX

64
(FIVE YEARS 8)

2022 ◽  
Vol 41 (1) ◽  
pp. 1-10
Author(s):  
Jonas Zehnder ◽  
Stelian Coros ◽  
Bernhard Thomaszewski

We present a sparse Gauss-Newton solver for accelerated sensitivity analysis with applications to a wide range of equilibrium-constrained optimization problems. Dense Gauss-Newton solvers have shown promising convergence rates for inverse problems, but the cost of assembling and factorizing the associated matrices has so far been a major stumbling block. In this work, we show how the dense Gauss-Newton Hessian can be transformed into an equivalent sparse matrix that can be assembled and factorized much more efficiently. This leads to drastically reduced computation times for many inverse problems, which we demonstrate on a diverse set of examples. We furthermore show links between sensitivity analysis and nonlinear programming approaches based on Lagrange multipliers and prove equivalence under specific assumptions that apply for our problem setting.


2022 ◽  
Vol 15 (2) ◽  
pp. 1-33
Author(s):  
Mikhail Asiatici ◽  
Paolo Ienne

Applications such as large-scale sparse linear algebra and graph analytics are challenging to accelerate on FPGAs due to the short irregular memory accesses, resulting in low cache hit rates. Nonblocking caches reduce the bandwidth required by misses by requesting each cache line only once, even when there are multiple misses corresponding to it. However, such reuse mechanism is traditionally implemented using an associative lookup. This limits the number of misses that are considered for reuse to a few tens, at most. In this article, we present an efficient pipeline that can process and store thousands of outstanding misses in cuckoo hash tables in on-chip SRAM with minimal stalls. This brings the same bandwidth advantage as a larger cache for a fraction of the area budget, because outstanding misses do not need a data array, which can significantly speed up irregular memory-bound latency-insensitive applications. In addition, we extend nonblocking caches to generate variable-length bursts to memory, which increases the bandwidth delivered by DRAMs and their controllers. The resulting miss-optimized memory system provides up to 25% speedup with 24× area reduction on 15 large sparse matrix-vector multiplication benchmarks evaluated on an embedded and a datacenter FPGA system.


Author(s):  
Yong Yang ◽  
Young Chun ko

With the rapid development of online e-commerce, traditional collaborative filtering algorithms have the disadvantages of data set reduction and sparse matrix filling cannot meet the requirements of users. This paper takes handicrafts as an example to propose the design and application of handicraft recommendation system based on an improved hybrid algorithm. Based on the theory of e-commerce system, through the traditional collaborative filtering algorithm of users, the personalized e-commerce system of hybrid algorithm is designed and analyzed. The personalized e-commerce system based on hybrid algorithm is further proposed. The component model of the business recommendation system and the specific steps of the improved hybrid algorithm based on user information are given. Finally, an experimental analysis of the improved hybrid algorithm is carried out. The results show that the algorithm can effectively improve the effectiveness and exemption of recommending handicrafts. What’s more, it can reduce the user item ratings of candidate set and improve accuracy of the forecast recommendation.


2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Xinxin Wang

With the frequent occurrence of international trade communication, in order to improve the quality of communication, this paper proposes a study on the translation of international trade English phrases and grammar. First, with the help of a rectangular window function, the composition principle of international trade English phrases is determined. Then, the horizontal feature aggregation point method is introduced to build a mathematical model of the characteristic identification of the English phrases. Finally, the sparse matrix representation of the source phrase is constructed to complete the extraction and preprocessing of the English phrase features. The input English sentence is converted into the output sentence, the form and POS factors of the English semantic translation are extracted, and a lemma is introduced to obtain the surface form of international trade English language factors. According to the international trade grammar analysis method, this paper decomposes the translation model, decomposes English sentences into small phrases for translation, and completes the research on international trade English phrase and grammar translation. The experimental results show that this method has high accuracy in the feature extraction of international trade English phrases, and the error rate is low, which is feasible.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 343
Author(s):  
Yanbin Zhang ◽  
Long-Ting Huang ◽  
Yangqing Li ◽  
Kai Zhang ◽  
Changchuan Yin

In order to reduce the amount of hyperspectral imaging (HSI) data transmission required through hyperspectral remote sensing (HRS), we propose a structured low-rank and joint-sparse (L&S) data compression and reconstruction method. The proposed method exploits spatial and spectral correlations in HSI data using sparse Bayesian learning and compressive sensing (CS). By utilizing a simultaneously L&S data model, we employ the information of the principal components and Bayesian learning to reconstruct the hyperspectral images. The simulation results demonstrate that the proposed method is superior to LRMR and SS&LR methods in terms of reconstruction accuracy and computational burden under the same signal-to-noise tatio (SNR) and compression ratio.


2022 ◽  
Vol 2146 (1) ◽  
pp. 012038
Author(s):  
Pengyi Tian ◽  
Dinggen Xu ◽  
Xiuyuan Zhang

Abstract Most of the current image fusion algorithms directly process the original image, neglect the analysis of the main components of the image, and have a great influence on the effect of image fusion. In this paper, the main component analysis method is used to decompose the image, divided into low rank matrix and sparse matrix, introduced compression perception technology and NSST transformation algorithm to process the two types of matrix, according to the corresponding fusion rules to achieve image fusion, through experimental results: this algorithm has greater mutual information compared with traditional algorithms, structural information similarity and average gradient.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chao Tang ◽  
Ling Luo ◽  
Yu Xu ◽  
Guobin Chen ◽  
Li Tang ◽  
...  

With the rapid development of DNA high-throughput testing technology, there is a high correlation between DNA sequence variation and human diseases, and detecting whether there is variation in DNA sequence has become a hot research topic at present. DNA sequence variation is relatively rare, and the establishment of DNA sequence sparse matrix, which can quickly detect and reason fusion variation point, has become an important work of tumor gene testing. Because there are differences between the current comparison software and mutation detection software in detecting the same sample, there are errors between the results of derivative sequence comparison and the detection of mutation. In this paper, SNP and InDel detection methods based on machine learning and sparse matrix detection are proposed, and VarScan 2, Genome Analysis Toolkit (GATK), BCFtools, and FreeBayes are compared. In the research of SNP and InDel detection with intelligent reasoning, the experimental results show that the detection accuracy and recall rate are better when the depth is increasing. The reasoning fusion method proposed in this paper has certain advantages in comparison effect and discovery in SNP and InDel and has good effect on swelling and pain gene detection.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yiyang Hong ◽  
Xingwen Zhao ◽  
Hui Zhu ◽  
Hui Li

With the rapid development of information technology, people benefit more and more from big data. At the same time, it becomes a great concern that how to obtain optimal outputs from big data publishing and sharing management while protecting privacy. Many researchers seek to realize differential privacy protection in massive high-dimensional datasets using the method of principal component analysis. However, these algorithms are inefficient in processing and do not take into account the different privacy protection needs of each attribute in high-dimensional datasets. To address the above problem, we design a Divided-block Sparse Matrix Transformation Differential Privacy Data Publishing Algorithm (DSMT-DP). In this algorithm, different levels of privacy budget parameters are assigned to different attributes according to the required privacy protection level of each attribute, taking into account the privacy protection needs of different levels of attributes. Meanwhile, the use of the divided-block scheme and the sparse matrix transformation scheme can improve the computational efficiency of the principal component analysis method for handling large amounts of high-dimensional sensitive data, and we demonstrate that the proposed algorithm satisfies differential privacy. Our experimental results show that the mean square error of the proposed algorithm is smaller than the traditional differential privacy algorithm with the same privacy parameters, and the computational efficiency can be improved. Further, we combine this algorithm with blockchain and propose an Efficient Privacy Data Publishing and Sharing Model based on the blockchain. Publishing and sharing private data on this model not only resist strong background knowledge attacks from adversaries outside the system but also prevent stealing and tampering of data by not-completely-honest participants inside the system.


Sign in / Sign up

Export Citation Format

Share Document