mixed precision
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 150)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 14 (4) ◽  
pp. 1-28
Author(s):  
Tao Yang ◽  
Zhezhi He ◽  
Tengchuan Kou ◽  
Qingzheng Li ◽  
Qi Han ◽  
...  

Field-programmable Gate Array (FPGA) is a high-performance computing platform for Convolution Neural Networks (CNNs) inference. Winograd algorithm, weight pruning, and quantization are widely adopted to reduce the storage and arithmetic overhead of CNNs on FPGAs. Recent studies strive to prune the weights in the Winograd domain, however, resulting in irregular sparse patterns and leading to low parallelism and reduced utilization of resources. Besides, there are few works to discuss a suitable quantization scheme for Winograd. In this article, we propose a regular sparse pruning pattern in the Winograd-based CNN, namely, Sub-row-balanced Sparsity (SRBS) pattern, to overcome the challenge of the irregular sparse pattern. Then, we develop a two-step hardware co-optimization approach to improve the model accuracy using the SRBS pattern. Based on the pruned model, we implement a mixed precision quantization to further reduce the computational complexity of bit operations. Finally, we design an FPGA accelerator that takes both the advantage of the SRBS pattern to eliminate low-parallelism computation and the irregular memory accesses, as well as the mixed precision quantization to get a layer-wise bit width. Experimental results on VGG16/VGG-nagadomi with CIFAR-10 and ResNet-18/34/50 with ImageNet show up to 11.8×/8.67× and 8.17×/8.31×/10.6× speedup, 12.74×/9.19× and 8.75×/8.81×/11.1× energy efficiency improvement, respectively, compared with the state-of-the-art dense Winograd accelerator [20] with negligible loss of model accuracy. We also show that our design has 4.11× speedup compared with the state-of-the-art sparse Winograd accelerator [19] on VGG16.


2021 ◽  
Author(s):  
Andrew E Blanchard ◽  
John Gounley ◽  
Debsindhu Bhowmik ◽  
Mayanka Chandra Shekar ◽  
Isaac Lyngaas ◽  
...  

The COVID-19 pandemic highlights the need for computational tools to automate and accelerate drug design for novel protein targets. We leverage deep learning language models to generate and score drug candidates based on predicted protein binding affinity. We pre-trained a deep learning language model (BERT) on ~9.6 billion molecules and achieved peak performance of 603 petaflops in mixed precision. Our work reduces pre-training time from days to hours, compared to previous efforts with this architecture, while also increasing the dataset size by nearly an order of magnitude. For scoring, we fine-tuned the language model using an assembled set of thousands of protein targets with binding affinity data and searched for inhibitors of specific protein targets, SARS-CoV-2 Mpro and PLpro. We utilized a genetic algorithm approach for finding optimal candidates using the generation and scoring capabilities of the language model. Our generalizable models accelerate the identification of inhibitors for emerging therapeutic targets.


2021 ◽  
Vol 21 (11) ◽  
pp. 281
Author(s):  
Qiao Wang ◽  
Chen Meng

Abstract We present a GPU-accelerated cosmological simulation code, PhotoNs-GPU, based on an algorithm of Particle Mesh Fast Multipole Method (PM-FMM), and focus on the GPU utilization and optimization. A proper interpolated method for truncated gravity is introduced to speed up the special functions in kernels. We verify the GPU code in mixed precision and different levels of theinterpolated method on GPU. A run with single precision is roughly two times faster than double precision for current practical cosmological simulations. But it could induce an unbiased small noise in power spectrum. Compared with the CPU version of PhotoNs and Gadget-2, the efficiency of the new code is significantly improved. Activated all the optimizations on the memory access, kernel functions and concurrency management, the peak performance of our test runs achieves 48% of the theoretical speed and the average performance approaches to ∼35% on GPU.


2021 ◽  
Vol 20 (5s) ◽  
pp. 1-23
Author(s):  
Robert Rabe ◽  
Anastasiia Izycheva ◽  
Eva Darulova

Efficient numerical programs are required for proper functioning of many systems. Today’s tools offer a variety of optimizations to generate efficient floating-point implementations that are specific to a program’s input domain. However, sound optimizations are of an “all or nothing” fashion with respect to this input domain—if an optimizer cannot improve a program on the specified input domain, it will conclude that no optimization is possible. In general, though, different parts of the input domain exhibit different rounding errors and thus have different optimization potential. We present the first regime inference technique for sound optimizations that automatically infers an effective subdivision of a program’s input domain such that individual sub-domains can be optimized more aggressively. Our algorithm is general; we have instantiated it with mixed-precision tuning and rewriting optimizations to improve performance and accuracy, respectively. Our evaluation on a standard benchmark set shows that with our inferred regimes, we can, on average, improve performance by 65% and accuracy by 54% with respect to whole-domain optimizations.


2021 ◽  
Vol 20 (5s) ◽  
pp. 1-25
Author(s):  
Nael Fasfous ◽  
Manoj Rohit Vemparala ◽  
Alexander Frickenstein ◽  
Emanuele Valpreda ◽  
Driton Salihu ◽  
...  

Model compression through quantization is commonly applied to convolutional neural networks (CNNs) deployed on compute and memory-constrained embedded platforms. Different layers of the CNN can have varying degrees of numerical precision for both weights and activations, resulting in a large search space. Together with the hardware (HW) design space, the challenge of finding the globally optimal HW-CNN combination for a given application becomes daunting. To this end, we propose HW-FlowQ, a systematic approach that enables the co-design of the target hardware platform and the compressed CNN model through quantization. The search space is viewed at three levels of abstraction, allowing for an iterative approach for narrowing down the solution space before reaching a high-fidelity CNN hardware modeling tool, capable of capturing the effects of mixed-precision quantization strategies on different hardware architectures (processing unit counts, memory levels, cost models, dataflows) and two types of computation engines (bit-parallel vectorized, bit-serial). To combine both worlds, a multi-objective non-dominated sorting genetic algorithm (NSGA-II) is leveraged to establish a Pareto-optimal set of quantization strategies for the target HW-metrics at each abstraction level. HW-FlowQ detects optima in a discrete search space and maximizes the task-related accuracy of the underlying CNN while minimizing hardware-related costs. The Pareto-front approach keeps the design space open to a range of non-dominated solutions before refining the design to a more detailed level of abstraction. With equivalent prediction accuracy, we improve the energy and latency by 20% and 45% respectively for ResNet56 compared to existing mixed-precision search methods.


Author(s):  
Shaikh Shakil Abdul Rajjak ◽  
A. K. Kureshi

Imaging sensors with higher resolution and higher frame rates are becoming more popular for wide-area video surveillance (VS) and other applications as technology advances Using Mask-RCNN, we proposed Multiple-Object Detection and Segmentation in High-Resolution Video based on Deep Learning. The ResNet-50 ResNet-101 is used as the backbone in the proposed R-CNN Mask FPN model. The deep residual network’s design overcomes the problem of lower learning efficiency due to the network’s deepening. To reach the objective of the smallest overall error, the deep residual network divided the training series into one training block, minimizing the error of each block. It is roughly divided into five convolutional layer stages. The output scale is cut in half at each point. We used mixed precision FP16 and FP32 for training the model and achieved great speed in training time reduction in inference time for object. The COCO 2014 data set is used to train and validate the proposed model with mixed precision, leading to faster performance. The results of the experiments show that the proposed model can run at 30–48 frames per second with 85% accuracy.


Sign in / Sign up

Export Citation Format

Share Document