Wind Distributed Generation with the Power Distribution Network for Power Quality Control

Author(s):  
Ali M. Eltamaly ◽  
Yehia Sayed Mohamed ◽  
Abou-Hashema M. El-Sayed ◽  
Amer Nasr A. Elghaffar
Author(s):  
Bawoke Simachew ◽  
baseem khan ◽  
Josep M Guerrero ◽  
Sanjeevikumar *Padmanaban ◽  
Om Prakash Mahela ◽  
...  

In the power distribution network, real power loss and voltage profile management are critical issues. By providing active and reactive power support, both of these issues can be managed. This paper utilized the Meta heuristic-based method for the optimal size and placement of distributed generation (DG) and capacitor (QG) sources for loss reduction by incorporating network current carrying capacity constraint in the optimization problem. The overall problem is optimized using an upgraded method of the fitness assignment and solution chasing based on the aggregate approach called Multi-objective Whale Optimization Algorithm (MWOA). Wind and solar photovoltaic sources are utilized as the distributed generation with their probabilistic outputs. The developed method is tested using two feeders of practical Bahir Dar Distribution Network, Ethiopia. The results of loss minimization and voltage profile management with MWOA are compared with multi-objective particle swam optimization (MPSO) with an equal number of iteration to show the superiority of the developed method.


2014 ◽  
Vol 668-669 ◽  
pp. 749-752 ◽  
Author(s):  
Xiao Yi Zhou ◽  
Ling Yun Wang ◽  
Wen Yue Liang ◽  
Li Zhou

Distributed generation (DG) has an important influence on the voltage of active distribution networks. A unidirectional power distribution network will be transformed into a bidirectional, multiple power supply distribution network after DGs access to the distribution network and the direction of power flow is also changed. Considering the traditional forward and backward substitution algorithm can only deal with the equilibrium node and PQ nodes, so the other types of DGs should be transformed into PQ nodes, then its impact on active distribution network can be analyzed via the forward and backward substitution algorithm. In this paper, the characteristics of active distribution networks are analyzed firstly and a novel approach is proposed to convert PI nodes into PQ nodes. Finally, a novel forward and backward substitution algorithm is adopted to calculate the power flow of the active distribution network with DGs. Extensive validation of IEEE 18 and 33 nodes distribution system indicates that this method is feasible. Numerical results show that when DG is accessed to the appropriate location with proper capacity, it has a significant capability to support the voltages level of distribution system.


Author(s):  
Patrick Taiwo Ogunboyo ◽  
Remy Tiako ◽  
Innocent E. Davidson

Dynamic Voltage Restorer (DVR) is a series connected power electronics based custom power device that is used to improve voltage disturbances in low voltage electrical power distribution network. Power quality requirement is one of the most important concerns for power system. The parts of the DVR is made up of voltage source inverter, injection/booster transformer, a harmonic filter, an energy storage device and a bypass switch. The DVR is used to inject three phase voltage in series and in synchronism with the network voltages in order to compensate voltage disturbances with a benefit of active /reactive power control. This paper presents a review of the researches on the dynamic voltage restorer application for power quality improvement in low voltage electrical power distribution networks. It describes power quality issues, principle of operation of DVR, basic components of DVR, DVRs control topologies in distribution network, DVR control strategies and compensation techniques.


2012 ◽  
Vol 516-517 ◽  
pp. 1425-1428
Author(s):  
Li Ming Wei ◽  
Jun Lin

The introduction of distributed generation will bring new challenges to the theory of power electricity market. The problem of loss allocation is one of them. In the paper three contents are introduced. Firstly, a loss allocation method is proposed for power distribution network with distributed generation. Secondly, the changes of loss allocation which introduction of distributed generation before and after brings about are analyzed and compared and relevant conclusions are obtained. Lastly, a typical mini-grid with a distributed generation is simulated. Simulation results prove the correctness and feasibility of the method.


Sign in / Sign up

Export Citation Format

Share Document