scholarly journals Particle Swarm Optimization Based Optimal Reactive Power Dispatch for Power Distribution Network with Distributed Generation

Author(s):  
Khine Zin Oo
Author(s):  
Yashar Mousavi ◽  
Mohammad Hosein Atazadegan ◽  
Arash Mousavi

Optimization of power distribution system reconfiguration is addressed as a multi-objective problem, which considers the system losses along with other objectives, and provides a viable solution for improvement of technical and economic aspects of distribution systems. A multi-objective chaotic fractional particle swarm optimization customized for power distribution network reconfiguration has been applied to reduce active power loss, improve the voltage profile, and increase the load balance in the system through deterministic and stochastic structures. In order to consider the prediction error of active and reactive loads in the network, it is assumed that the load behaviour follows the normal distribution function. An attempt is made to consider the load forecasting error on the network to reach the optimal point for the network in accordance with the reality. The efficiency and feasibility of the proposed method is studied through standard IEEE 33-bus and 69-bus systems. In comparison with other methods, the proposed method demonstrated superior performance by reducing the voltage deviation and power losses. It also achieved better load balancing.


2014 ◽  
Vol 699 ◽  
pp. 809-815 ◽  
Author(s):  
Mohamad Fani Sulaima ◽  
Mohd Hafiz Jali ◽  
Wan Mohd Bukhari ◽  
M.N.M. Nasir ◽  
Hazriq Izzuan Jaafar

Due to the complexity of modern power distribution network, a hybridization of heuristic method which is called as Evolutionary Particle Swarm Optimization (EPSO) is introduced to identify the open and closed switching operation plans for network reconfiguration. The objectives of this work are to reduce the power losses and improve the voltage profile in the overall system meanwhile minimizing the computational time. The proposed combination of Particle Swarm Optimization (PSO) and Evolutionary Programming (EP) is introduced to make it faster in order to find the optimal solution. The proposed method is applied and it impacts to the network reconfiguration for real power loss and voltage profiles is investigated respectively. The proposed method is tested on a IEEE 33-bus system and it is compared to the traditional PSO and EP method accordingly. The results of this study is hoped to help the power engineer to configure the smart and less lossed network in the future.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2333 ◽  
Author(s):  
Tawfiq M. Aljohani ◽  
Ahmed F. Ebrahim ◽  
Osama Mohammed

The optimal reactive power dispatch (ORPD) problem represents a noncontinuous, nonlinear, highly constrained optimization problem that has recently attracted wide research investigation. This paper presents a new hybridization technique for solving the ORPD problem based on the integration of particle swarm optimization (PSO) with artificial physics optimization (APO). This hybridized algorithm is tested and verified on the IEEE 30, IEEE 57, and IEEE 118 bus test systems to solve both single and multiobjective ORPD problems, considering three main aspects. These aspects include active power loss minimization, voltage deviation minimization, and voltage stability improvement. The results prove that the algorithm is effective and displays great consistency and robustness in solving both the single and multiobjective functions while improving the convergence performance of the PSO. It also shows superiority when compared with results obtained from previously reported literature for solving the ORPD problem.


Sign in / Sign up

Export Citation Format

Share Document