Anomaly Detection in Real-Time Surveillance Videos Using Deep Learning

Author(s):  
Aswathy K. Cherian ◽  
E. Poovammal
Author(s):  
John Gatara Munyua ◽  
Geoffrey Mariga Wambugu ◽  
Stephen Thiiru Njenga

Deep learning has proven to be a landmark computing approach to the computer vision domain. Hence, it has been widely applied to solve complex cognitive tasks like the detection of anomalies in surveillance videos. Anomaly detection in this case is the identification of abnormal events in the surveillance videos which can be deemed as security incidents or threats. Deep learning solutions for anomaly detection has outperformed other traditional machine learning solutions. This review attempts to provide holistic benchmarking of the published deep learning solutions for videos anomaly detection since 2016. The paper identifies, the learning technique, datasets used and the overall model accuracy. Reviewed papers were organised into five deep learning methods namely; autoencoders, continual learning, transfer learning, reinforcement learning and ensemble learning. Current and emerging trends are discussed as well.


2021 ◽  
Author(s):  
Menaa Nawaz ◽  
Jameel Ahmed

Abstract Physiological signals retrieve the information from sensors implanted or attached to the human body. These signals are vital data sources that can assist in predicting the disease well before time and thus proper treatment can be made possible. With the addition of Internet of Things in healthcare, real-time data collection and pre-processing for signal analysis has reduced burden of in-person appointments and decision making on healthcare. Recently, Deep learning-based algorithms have been implemented by researchers for recognition, realization and prediction of diseases by extracting and analyzing the important features. In this research real-time 1-D timeseries data of on-body non-invasive bio-medical sensors have been acquired and pre-processed and analyzed for anomaly detection. Feature engineered parameters of large and diverse dataset have been used to train the data to make the anomaly detection system more reliable. For comprehensive real-time monitoring the implemented system uses wavelet time scattering features for classification and deep learning based autoencoder for anomaly detection of time series signals for assisting the clinical diagnosis of cardiovascular and muscular activity. In this research, an implementation of IoT based healthcare system using bio-medical sensors has been presented. This paper also aims to provide the analysis of cloud data acquired through bio-medical sensors using signal analysis techniques for anomaly detection and timeseries classification has been done for the disease prognosis in real-time. Wavelet time scattering based signals classification accuracy of 99.88% is achieved. In real time signals anomaly detection, 98% accuracy is achieved. The average Mean Absolute Error loss of 0.0072 for normal signals and 0.078 is achieved for anomaly signals.


2021 ◽  
Author(s):  
Menaa Nawaz ◽  
Jameel Ahmed

Abstract Physiological signals retrieve information from sensors implanted or attached to the human body. These signals are vital data sources that can assist in predicting the disease well before time; thus, proper treatment can be made possible. With the addition of the Internet of Things in healthcare, real-time data collection and preprocessing for signal analysis has reduced the burden of in-person appointments and decision making on healthcare. Recently, deep learning-based algorithms have been implemented by researchers for the recognition, realization and prediction of diseases by extracting and analyzing important features. In this research, real-time 1-D time series data of on-body noninvasive biomedical sensors were acquired, preprocessed and analysed for anomaly detection. Feature engineered parameters of large and diverse datasets have been used to train the data to make the anomaly detection system more reliable. For comprehensive real-time monitoring, the implemented system uses wavelet time scattering features for classification and a deep learning-based autoencoder for anomaly detection of time series signals to assist the clinical diagnosis of cardiovascular and muscular activity. In this research, an implementation of an IoT-based AI-edge healthcare framework using biomedical sensors was presented. This paper also aims to analyse cloud data acquired through biomedical sensors using signal analysis techniques for anomaly detection, and time series classification has been performed for disease prognosis in real time by implementing 24 AI-based techniques to find the most accurate technique for real-time raw signals. The deep learning-based LSTM method based on wavelet time scattering feature extraction has shown a classification test accuracy of 100%. Using wavelet time scattering feature extraction achieved 95% signal reduction to increase the real-time processing speed. In real-time signal anomaly detection, 98% accuracy is achieved using LSTM autoencoders. The average mean absolute error loss of 0.0072 for normal signals and 0.078 is achieved for anomalous signals.


Sign in / Sign up

Export Citation Format

Share Document