Real-Time Evasion Attacks against Deep Learning-Based Anomaly Detection from Distributed System Logs

Author(s):  
J. Dinal Herath ◽  
Ping Yang ◽  
Guanhua Yan
2021 ◽  
Author(s):  
Menaa Nawaz ◽  
Jameel Ahmed

Abstract Physiological signals retrieve the information from sensors implanted or attached to the human body. These signals are vital data sources that can assist in predicting the disease well before time and thus proper treatment can be made possible. With the addition of Internet of Things in healthcare, real-time data collection and pre-processing for signal analysis has reduced burden of in-person appointments and decision making on healthcare. Recently, Deep learning-based algorithms have been implemented by researchers for recognition, realization and prediction of diseases by extracting and analyzing the important features. In this research real-time 1-D timeseries data of on-body non-invasive bio-medical sensors have been acquired and pre-processed and analyzed for anomaly detection. Feature engineered parameters of large and diverse dataset have been used to train the data to make the anomaly detection system more reliable. For comprehensive real-time monitoring the implemented system uses wavelet time scattering features for classification and deep learning based autoencoder for anomaly detection of time series signals for assisting the clinical diagnosis of cardiovascular and muscular activity. In this research, an implementation of IoT based healthcare system using bio-medical sensors has been presented. This paper also aims to provide the analysis of cloud data acquired through bio-medical sensors using signal analysis techniques for anomaly detection and timeseries classification has been done for the disease prognosis in real-time. Wavelet time scattering based signals classification accuracy of 99.88% is achieved. In real time signals anomaly detection, 98% accuracy is achieved. The average Mean Absolute Error loss of 0.0072 for normal signals and 0.078 is achieved for anomaly signals.


2021 ◽  
Vol 4 ◽  
Author(s):  
Jennifer R. Andersson ◽  
Jose Alonso Moya ◽  
Ulrich Schwickerath

For several years CERN has been offering a centralised service for Elasticsearch, a popular distributed system for search and analytics of user provided data. The service offered by CERN IT is better described as a service of services, delivering centrally managed and maintained Elasticsearch instances to CERN users who have a justified need for it. This dynamic infrastructure currently consists of about 30 distinct and independent Elasticsearch installations, in the following referred to as Elasticsearch clusters, some of which are shared between different user communities. The service is used by several hundred users mainly for logs and service analytics. Due to its size and complexity, the installation produces a huge amount of internal monitoring data which can be difficult to process in real time with limited available person power. Early on, an idea was therefore born to process this data automatically, aiming to extract anomalies and possible issues building up in real time, allowing the experts to address them before they start to cause an issue for the users of the service. Both deep learning and traditional methods have been applied to analyse the data in order to achieve this goal. This resulted in the current deployment of an anomaly detection system based on a one layer multi dimensional LSTM neural network, coupled with applying a simple moving average to the data to validate the results. This paper will describe which methods were investigated and give an overview of the current system, including data retrieval, data pre-processing and analysis. In addition, reports on experiences gained when applying the system to actual data will be provided. Finally, weaknesses of the current system will be briefly discussed, and ideas for future system improvements will be sketched out.


2021 ◽  
Author(s):  
Menaa Nawaz ◽  
Jameel Ahmed

Abstract Physiological signals retrieve information from sensors implanted or attached to the human body. These signals are vital data sources that can assist in predicting the disease well before time; thus, proper treatment can be made possible. With the addition of the Internet of Things in healthcare, real-time data collection and preprocessing for signal analysis has reduced the burden of in-person appointments and decision making on healthcare. Recently, deep learning-based algorithms have been implemented by researchers for the recognition, realization and prediction of diseases by extracting and analyzing important features. In this research, real-time 1-D time series data of on-body noninvasive biomedical sensors were acquired, preprocessed and analysed for anomaly detection. Feature engineered parameters of large and diverse datasets have been used to train the data to make the anomaly detection system more reliable. For comprehensive real-time monitoring, the implemented system uses wavelet time scattering features for classification and a deep learning-based autoencoder for anomaly detection of time series signals to assist the clinical diagnosis of cardiovascular and muscular activity. In this research, an implementation of an IoT-based AI-edge healthcare framework using biomedical sensors was presented. This paper also aims to analyse cloud data acquired through biomedical sensors using signal analysis techniques for anomaly detection, and time series classification has been performed for disease prognosis in real time by implementing 24 AI-based techniques to find the most accurate technique for real-time raw signals. The deep learning-based LSTM method based on wavelet time scattering feature extraction has shown a classification test accuracy of 100%. Using wavelet time scattering feature extraction achieved 95% signal reduction to increase the real-time processing speed. In real-time signal anomaly detection, 98% accuracy is achieved using LSTM autoencoders. The average mean absolute error loss of 0.0072 for normal signals and 0.078 is achieved for anomalous signals.


2020 ◽  
Vol 16 (1) ◽  
pp. 393-402 ◽  
Author(s):  
Rashmika Nawaratne ◽  
Damminda Alahakoon ◽  
Daswin De Silva ◽  
Xinghuo Yu

Sign in / Sign up

Export Citation Format

Share Document