Real-time crowd behavior recognition in surveillance videos based on deep learning methods

Author(s):  
Fariba Rezaei ◽  
Mehran Yazdi
Author(s):  
Rotimi-Williams Bello ◽  
Ahmad Sufril Azlan Mohamed ◽  
Abdullah Zawawi Talib ◽  
Salisu Sani ◽  
Mohd Nadhir Ab Wahab

Background: One important indicator for the wellbeing status of livestock is their daily behavior. More often than not, daily behavior recognition involves detecting the heads or body gestures of the livestock using conventional methods or tools. To prevail over such limitations, an effective approach using deep learning is proposed in this study for cattle behavior recognition. Methods: The approach for detecting the behavior of individual cows was designed in terms of their eating, drinking, active, and inactive behaviors captured from video sequences and based on the investigation of the attributes and practicality of the state-of-the-art deep learning methods. Result: Among the four models employed, Mask R-CNN achieved average recognition accuracies of 93.34%, 88.03%, 93.51% and 93.38% for eating, drinking, active and inactive behaviors. This implied that Mask R-CNN achieved higher cow detection accuracy and speed than the remaining models with 20 fps, making the proposed approach competes favorably well with other approaches and suitable for behavior recognition of group-ranched cattle in real-time.


Author(s):  
Dimitrios Meimetis ◽  
Ioannis Daramouskas ◽  
Isidoros Perikos ◽  
Ioannis Hatzilygeroudis

2020 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Vladimir Mochalov ◽  
Anastasia Mochalova

In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.


2020 ◽  
Vol 12 (1) ◽  
pp. 1-11
Author(s):  
Arivudainambi D. ◽  
Varun Kumar K.A. ◽  
Vinoth Kumar R. ◽  
Visu P.

Ransomware is a malware which affects the systems data with modern encryption techniques, and the data is recovered once a ransom amount is paid. In this research, the authors show how ransomware propagates and infects devices. Live traffic classifications of ransomware have been meticulously analyzed. Further, a novel method for the classification of ransomware traffic by using deep learning methods is presented. Based on classification, the detection of ransomware is approached with the characteristics of the network traffic and its communications. In more detail, the behavior of popular ransomware, Crypto Wall, is analyzed and based on this knowledge, a real-time ransomware live traffic classification model is proposed.


2021 ◽  
Vol 19 (6) ◽  
pp. 994-1001
Author(s):  
Diego Gonzalez Dondo ◽  
Javier Andres Redolfi ◽  
R. Gaston Araguas ◽  
Daiana Garcia

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Nadim Arubai ◽  
Omar Hamdoun ◽  
Assef Jafar

Applying deep learning methods, this paper addresses depth prediction problem resulting from single monocular images. A vector of distances is predicted instead of a whole image matrix. A vector-only prediction decreases training overhead and prediction periods and requires less resources (memory, CPU). We propose a module which is more time efficient than the state-of-the-art modules ResNet, VGG, FCRN, and DORN. We enhanced the network results by training it on depth vectors from other levels (we get a new level by changing the Lidar tilt angle). The predicted results give a vector of distances around the robot, which is sufficient for the obstacle avoidance problem and many other applications.


Sign in / Sign up

Export Citation Format

Share Document