learning reinforcement
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 35)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
pp. 1701-1719
Author(s):  
Vimaladevi M. ◽  
Zayaraz G.

The use of software in mission critical applications poses greater quality needs. Quality assurance activities are aimed at ensuring such quality requirements of the software system. Antifragility is a property of software that increases its quality as a result of errors, faults, and attacks. Such antifragile software systems proactively accepts the errors and learns from these errors and relies on test-driven development methodology. In this article, an innovative approach is proposed which uses a fault injection methodology to perform the task of quality assurance. Such a fault injection mechanism makes the software antifragile and it gets better with the increase in the intensity of such errors up to a point. A software quality game is designed as a two-player game model with stressor and backer entities. The stressor is an error model which injects errors into the software system. The software system acts as a backer, and tries to recover from the errors. The backer uses a cheating mechanism by implementing software Learning Hooks (SLH) which learn from the injected errors. This makes the software antifragile and leads to improvement of the code. Moreover, the SLH uses a Q-Learning reinforcement algorithm with a hybrid reward function to learn from the incoming defects. The game is played for a maximum of K errors. This approach is introduced to incorporate the anti-fragility aspects into the software system within the existing framework of object-oriented development. The game is run at the end of every increment during the construction of object-oriented systems. A detailed report of the injected errors and the actions taken is output at the end of each increment so that necessary actions are incorporated into the actual software during the next iteration. This ensures at the end of all the iterations, the software is immune to majority of the so-called Black Swans. The experiment is conducted with an open source Java sample and the results are studied selected two categories of evaluation parameters. The defect related performance parameters considered are the defect density, defect distribution over different iterations, and number of hooks inserted. These parameters show much reduction in adopting the proposed approach. The quality parameters such as abstraction, inheritance, and coupling are studied for various iterations and this approach ensures considerable increases in these parameters.


2021 ◽  
Vol 24 (6) ◽  
pp. 651-662
Author(s):  
Hye-Kyung Lim ◽  
Hyun-Ok Kim ◽  
Hae-Seon Park

Background and objective: This study identifies whether children's planning-organizing executive function can be significantly classified and predicted by home environment quality and wealth factors.Methods: For empirical analysis, we used the data collected from the 10th Panel Study on Korean Children in 2017. Using machine learning tools such as support vector machine (SVM) and random forest (RF), we evaluated the accuracy of the model in which home environment factors classify and predict children's planning-organizing executive functions, and extract the relative importance of variables that determine these executive functions by income group.Results: First, SVM analysis shows that home environment quality and wealth factors show high accuracy in classification and prediction in all three groups. Second, RF analysis shows that estate had the highest predictive power in the high-income group, followed by income, asset, learning, reinforcement, and emotional environment. In the middle-income group, emotional environment showed the highest score, followed by estate, asset, reinforcement, and income. In the low-income group, estate showed the highest score, followed by income, asset, learning, reinforcement, and emotional environment.Conclusion: This study confirmed that home environment quality and wealth factors are significant factors in predicting children’s planning-organizing executive functions.


Author(s):  
Rafet Durgut ◽  
Mehmet Emin Aydin ◽  
Abdur Rakib

In the past two decades, metaheuristic optimization algorithms (MOAs) have been increasingly popular, particularly in logistic, science, and engineering problems. The fundamental characteristics of such algorithms are that they are dependent on a parameter or a strategy. Some online and offline strategies are employed in order to obtain optimal configurations of the algorithms. Adaptive operator selection is one of them, and it determines whether or not to update a strategy from the strategy pool during the search process. In the filed of machine learning, Reinforcement Learning (RL) refers to goal-oriented algorithms, which learn from the environment how to achieve a goal. On MOAs, reinforcement learning has been utilised to control the operator selection process. Existing research, however, fails to show that learned information may be transferred from one problem-solving procedure to another. The primary goal of the proposed research is to determine the impact of transfer learning on RL and MOAs. As a test problem, a set union knapsack problem with 30 separate benchmark problem instances is used. The results are statistically compared in depth. The learning process, according to the findings, improved the convergence speed while significantly reducing the CPU time.


2021 ◽  

For 80 years, mathematics has driven fundamental innovation in computing and communications. This timely book provides a panorama of some recent ideas in mathematics and how they will drive continued innovation in computing, communications and AI in the coming years. It provides a unique insight into how the new techniques that are being developed can be used to provide theoretical foundations for technological progress, just as mathematics was used in earlier times by Turing, von Neumann, Shannon and others. Edited by leading researchers in the field, chapters cover the application of new mathematics in computer architecture, software verification, quantum computing, compressed sensing, networking, Bayesian inference, machine learning, reinforcement learning and many other areas.


Author(s):  
John Gatara Munyua ◽  
Geoffrey Mariga Wambugu ◽  
Stephen Thiiru Njenga

Deep learning has proven to be a landmark computing approach to the computer vision domain. Hence, it has been widely applied to solve complex cognitive tasks like the detection of anomalies in surveillance videos. Anomaly detection in this case is the identification of abnormal events in the surveillance videos which can be deemed as security incidents or threats. Deep learning solutions for anomaly detection has outperformed other traditional machine learning solutions. This review attempts to provide holistic benchmarking of the published deep learning solutions for videos anomaly detection since 2016. The paper identifies, the learning technique, datasets used and the overall model accuracy. Reviewed papers were organised into five deep learning methods namely; autoencoders, continual learning, transfer learning, reinforcement learning and ensemble learning. Current and emerging trends are discussed as well.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jieqiong Zhou ◽  
Zhenhua Wei ◽  
Bin Peng ◽  
Fangchun Chi

Film and television literature recommendation is an AI algorithm that recommends related content according to user preferences and records. The wide application in various APPs and websites provides users with great convenience. This article aims to study the Internet of Things and machine learning technology, combining deep learning, reinforcement learning, and recommendation algorithms, to achieve accurate recommendation of film and television literature. This paper proposes to use the ConvMF-KNN recommendation model to verify and analyze the four models of PMF, ConvM, ConvMF-word2vec, and ConvMF-KNN, respectively, on public datasets. Using the path information between vertices in bipartite graph and considering the degree of vertices, the similarity between items is calculated, and the neighbor item set of items is obtained. The experimental results show that the ConvMF-KNN model combined with the KNN idea effectively improves the recommendation accuracy. Compared with the accuracy of the PMF model on the MovieLens 100 k, MovieLens 1 M, and AIV datasets, the accuracy of the ConvMF model on the above three datasets is 5.26%, 6.31%, and 26.71%, respectively, an increase of 2.26%, 1.22%, and 7.96%. This model is of great significance.


Author(s):  
Su Yong Kim ◽  
Yeon Geol Hwang ◽  
Sung Woong Moon

The existing underwater vehicle controller design is applied by linearizing the nonlinear dynamics model to a specific motion section. Since the linear controller has unstable control performance in a transient state, various studies have been conducted to overcome this problem. Recently, there have been studies to improve the control performance in the transient state by using reinforcement learning. Reinforcement learning can be largely divided into value-based reinforcement learning and policy-based reinforcement learning. In this paper, we propose the roll controller of underwater vehicle based on Deep Deterministic Policy Gradient(DDPG) that learns the control policy and can show stable control performance in various situations and environments. The performance of the proposed DDPG based roll controller was verified through simulation and compared with the existing PID and DQN with Normalized Advantage Functions based roll controllers.


2021 ◽  
Vol 9 ◽  
Author(s):  
R. Lakshmana Kumar ◽  
Firoz Khan ◽  
Sadia Din ◽  
Shahab S. Band ◽  
Amir Mosavi ◽  
...  

Detection and prediction of the novel Coronavirus present new challenges for the medical research community due to its widespread across the globe. Methods driven by Artificial Intelligence can help predict specific parameters, hazards, and outcomes of such a pandemic. Recently, deep learning-based approaches have proven a novel opportunity to determine various difficulties in prediction. In this work, two learning algorithms, namely deep learning and reinforcement learning, were developed to forecast COVID-19. This article constructs a model using Recurrent Neural Networks (RNN), particularly the Modified Long Short-Term Memory (MLSTM) model, to forecast the count of newly affected individuals, losses, and cures in the following few days. This study also suggests deep learning reinforcement to optimize COVID-19's predictive outcome based on symptoms. Real-world data was utilized to analyze the success of the suggested system. The findings show that the established approach promises prognosticating outcomes concerning the current COVID-19 pandemic and outperformed the Long Short-Term Memory (LSTM) model and the Machine Learning model, Logistic Regresion (LR) in terms of error rate.


Sign in / Sign up

Export Citation Format

Share Document