Contour integral around a crack at the root of a step loaded in antiplane strain

1983 ◽  
Vol 23 (1) ◽  
pp. R15-R21
Author(s):  
W. S. Blackburn ◽  
J. N. Swingler
Author(s):  
Kazutoshi Ohta ◽  
Norisuke Sakai

Abstract We study the moduli space volume of BPS vortices in quiver gauge theories on compact Riemann surfaces. The existence of BPS vortices imposes constraints on the quiver gauge theories. We show that the moduli space volume is given by a vev of a suitable cohomological operator (volume operator) in a supersymmetric quiver gauge theory, where BPS equations of the vortices are embedded. In the supersymmetric gauge theory, the moduli space volume is exactly evaluated as a contour integral by using the localization. Graph theory is useful to construct the supersymmetric quiver gauge theory and to derive the volume formula. The contour integral formula of the volume (generalization of the Jeffrey-Kirwan residue formula) leads to the Bradlow bounds (upper bounds on the vorticity by the area of the Riemann surface divided by the intrinsic size of the vortex). We give some examples of various quiver gauge theories and discuss properties of the moduli space volume in these theories. Our formula are applied to the volume of the vortex moduli space in the gauged non-linear sigma model with CPN target space, which is obtained by a strong coupling limit of a parent quiver gauge theory. We also discuss a non-Abelian generalization of the quiver gauge theory and “Abelianization” of the volume formula.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Raheel Kamal ◽  
Kamran ◽  
Gul Rahmat ◽  
Ali Ahmadian ◽  
Noreen Izza Arshad ◽  
...  

AbstractIn this article we propose a hybrid method based on a local meshless method and the Laplace transform for approximating the solution of linear one dimensional partial differential equations in the sense of the Caputo–Fabrizio fractional derivative. In our numerical scheme the Laplace transform is used to avoid the time stepping procedure, and the local meshless method is used to produce sparse differentiation matrices and avoid the ill conditioning issues resulting in global meshless methods. Our numerical method comprises three steps. In the first step we transform the given equation to an equivalent time independent equation. Secondly the reduced equation is solved via a local meshless method. Finally, the solution of the original equation is obtained via the inverse Laplace transform by representing it as a contour integral in the complex left half plane. The contour integral is then approximated using the trapezoidal rule. The stability and convergence of the method are discussed. The efficiency, efficacy, and accuracy of the proposed method are assessed using four different problems. Numerical approximations of these problems are obtained and validated against exact solutions. The obtained results show that the proposed method can solve such types of problems efficiently.


2003 ◽  
Vol 01 (02) ◽  
pp. 213-241 ◽  
Author(s):  
R. WONG ◽  
Y.-Q. ZHAO

There are now several ways to derive an asymptotic expansion for [Formula: see text], as n → ∞, which holds uniformly for [Formula: see text]. One of these starts with a contour integral, involves a transformation which takes this integral into a canonical form, and makes repeated use of an integration-by-parts technique. There are two advantages to this approach: (i) it provides a recursive formula for calculating the coefficients in the expansion, and (ii) it leads to an explicit expression for the error term. In this paper, we point out that the estimate for the error term given previously is not sufficient for the expansion to be regarded as genuinely uniform for θ near the origin, when one takes into account the behavior of the coefficients near θ = 0. Our purpose here is to use an alternative method to estimate the remainder. First, we show that the coefficients in the expansion are bounded for [Formula: see text]. Next, we give an estimate for the error term which is of the same order as the first neglected term.


Sign in / Sign up

Export Citation Format

Share Document