scholarly journals Approximation of linear one dimensional partial differential equations including fractional derivative with non-singular kernel

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Raheel Kamal ◽  
Kamran ◽  
Gul Rahmat ◽  
Ali Ahmadian ◽  
Noreen Izza Arshad ◽  
...  

AbstractIn this article we propose a hybrid method based on a local meshless method and the Laplace transform for approximating the solution of linear one dimensional partial differential equations in the sense of the Caputo–Fabrizio fractional derivative. In our numerical scheme the Laplace transform is used to avoid the time stepping procedure, and the local meshless method is used to produce sparse differentiation matrices and avoid the ill conditioning issues resulting in global meshless methods. Our numerical method comprises three steps. In the first step we transform the given equation to an equivalent time independent equation. Secondly the reduced equation is solved via a local meshless method. Finally, the solution of the original equation is obtained via the inverse Laplace transform by representing it as a contour integral in the complex left half plane. The contour integral is then approximated using the trapezoidal rule. The stability and convergence of the method are discussed. The efficiency, efficacy, and accuracy of the proposed method are assessed using four different problems. Numerical approximations of these problems are obtained and validated against exact solutions. The obtained results show that the proposed method can solve such types of problems efficiently.

2016 ◽  
Vol 5 (1) ◽  
pp. 86
Author(s):  
Naser Al-Qutaifi

<p>The idea of replacing the first derivative in time by a fractional derivative of order , where , leads to a fractional generalization of any partial differential equations of integer order. In this paper, we obtain a relationship between the solution of the integer order equation and the solution of its fractional extension by using the Laplace transform method.</p>


Author(s):  
M. Matinfar ◽  
M. Saeidy ◽  
M. Ghasemi

AbstractIn this paper, the Laplace transform Variational Iteration Method (LVIM) is employed to obtain approximate analytical solutions of the linear and nonlinear partial differential equations. This method is a combined form of the Laplace transform method and the Variational Iteration Method. The proposed scheme, finds the solutions without any discretization or restrictive assumptions and is free from round-off errors and therefore, reduces the numerical computations to a great extent. Some illustrative examples are presented and the numerical results show that the solutions of the LVIM are in good agreement with the exact solution.


2018 ◽  
Vol 7 (1) ◽  
pp. 45-49
Author(s):  
S L Shaikh

In this paper we have derived Sadik transform of the partial derivatives of a function of two variables. We have demonstrated the applicability of the Sadik transform by solving some examples of partial differential equations. We have verified solutions of partial differential equations by Sadik transform with the Laplace transform and the Sumudu transform.


Author(s):  
Shohei Nakajima

AbstractWe prove existence of solutions and its properties for a one-dimensional stochastic partial differential equations with fractional Laplacian and non-Lipschitz coefficients. The method of proof is eatablished by Kolmogorov’s continuity theorem and tightness arguments.


2021 ◽  
pp. 2150492
Author(s):  
Delmar Sherriffe ◽  
Diptiranjan Behera ◽  
P. Nagarani

The study of nonlinear physical and abstract systems is greatly important in order to determine the behavior of the solutions for Fractional Partial Differential Equations (FPDEs). In this paper, we study the analytical wave solutions of the time-fractional coupled Whitham–Broer–Kaup (WBK) equations under the meaning of conformal fractional derivative. These solutions are derived using the modified extended tanh-function method. Accordingly, different new forms of the solutions are obtained. In order to understand its behavior under varying parameters, we give the visual representations of all the solutions. Finally, the graphs are discussed and a conclusion is given.


Author(s):  
Augusto César Ferreira ◽  
Miguel Ureña ◽  
HIGINIO RAMOS

The generalized finite difference method is a meshless method for solving partial differential equations that allows arbitrary discretizations of points. Typically, the discretizations have the same density of points in the domain. We propose a technique to get adapted discretizations for the solution of partial differential equations. This strategy allows using a smaller number of points and a lower computational cost to achieve the same accuracy that would be obtained with a regular discretization.


Sign in / Sign up

Export Citation Format

Share Document