Mixed-mode stress intensity factors for the obliqued edge-crack in rectangular specimens

1993 ◽  
Vol 61 (1) ◽  
pp. R3-R10 ◽  
Author(s):  
T. Fett
2001 ◽  
Vol 68 (6) ◽  
pp. 937-943 ◽  
Author(s):  
K. Bearden ◽  
J. W. Dally ◽  
R. J. Sanford

Since the pioneering discussion by Irwin, a significant effort has been devoted to determining stress intensity factors (K) using experimental methods. Techniques have been developed to determine stress intensity factors from photoelastic, strain gage, caustics, and moire´ data. All of these methods apply to a relatively long single-ended-edge crack. To date, the determination of K for internal cracks that are double-ended by experimental methods has not been addressed. This paper describes a photoelastic study of tension panels with both central and eccentric internal cracks. The data recorded in the experiments was analyzed using a new series solution for the opening-mode stress intensity factor for an internal crack. The data was also analyzed using the edge-crack series solution, which is currently employed in experimental studies. Results indicated that the experimental methods usually provided results accurate to within three to five percent if the series solution for the internal crack was employed in an overdeterministic numerical analysis of the data. Comparison of experimental results using the new series for the internal crack and the series for an edge crack showed the superiority of the new series.


1999 ◽  
Author(s):  
Haiying Huang ◽  
George A. Kadomateas ◽  
Valeria La Saponara

Abstract This paper presents a method for determining the dislocation solution in a bi-material half plane and a bi-material infinite strip, which is subsequently used to obtain the mixed-mode stress intensity factors for a corresponding bi-material interface crack. First, the dislocation solution in a bi-material infinite plane is summarized. An array of surface dislocations is then distributed along the free boundary of the half plane and the infinite strip. The dislocation densities of the aforementioned surface dislocations are determined by satisfying the traction-free boundary conditions. After the dislocation solution in the finite domain is achieved, the mixed-mode stress intensity factors for interface cracks are calculated based on the continuous dislocation technique. Results are compared with analytical solution for homogeneous anisotropic media.


Sign in / Sign up

Export Citation Format

Share Document