Interaction of the moon with the earth's magnetosphere

1967 ◽  
Vol 6 (5) ◽  
Author(s):  
Otto Schneider
2021 ◽  
Vol 7 (32) ◽  
pp. eabi7647
Author(s):  
John A. Tarduno ◽  
Rory D. Cottrell ◽  
Kristin Lawrence ◽  
Richard K. Bono ◽  
Wentao Huang ◽  
...  

Determining the presence or absence of a past long-lived lunar magnetic field is crucial for understanding how the Moon’s interior and surface evolved. Here, we show that Apollo impact glass associated with a young 2 million–year–old crater records a strong Earth-like magnetization, providing evidence that impacts can impart intense signals to samples recovered from the Moon and other planetary bodies. Moreover, we show that silicate crystals bearing magnetic inclusions from Apollo samples formed at ∼3.9, 3.6, 3.3, and 3.2 billion years ago are capable of recording strong core dynamo–like fields but do not. Together, these data indicate that the Moon did not have a long-lived core dynamo. As a result, the Moon was not sheltered by a sustained paleomagnetosphere, and the lunar regolith should hold buried 3He, water, and other volatile resources acquired from solar winds and Earth’s magnetosphere over some 4 billion years.


2009 ◽  
Vol 36 (22) ◽  
Author(s):  
Takaaki Tanaka ◽  
Yoshifumi Saito ◽  
Shoichiro Yokota ◽  
Kazushi Asamura ◽  
Masaki N. Nishino ◽  
...  

2021 ◽  
Vol 215 ◽  
pp. 105581
Author(s):  
Yuri A. Omelchenko ◽  
Vadim Roytershteyn ◽  
Li-Jen Chen ◽  
Jonathan Ng ◽  
Heli Hietala

1987 ◽  
Vol 92 (A11) ◽  
pp. 12233 ◽  
Author(s):  
G. Crowley ◽  
W. J. Hughes ◽  
T. B. Jones

2018 ◽  
Vol 56 (2) ◽  
pp. 309-332 ◽  
Author(s):  
N. Yu. Ganushkina ◽  
M. W. Liemohn ◽  
S. Dubyagin

Sign in / Sign up

Export Citation Format

Share Document