The effect of acetylcholine on the visual response of lagged cells in the cat dorsal lateral geniculate nucleus

1993 ◽  
Vol 95 (3) ◽  
Author(s):  
E. Hartveit ◽  
P. Heggelund

2007 ◽  
Vol 104 (18) ◽  
pp. 7670-7675 ◽  
Author(s):  
John S. Pezaris ◽  
R. Clay Reid

Electrical stimulation of the visual system might serve as the foundation for a prosthetic device for the blind. We examined whether microstimulation of the dorsal lateral geniculate nucleus of the thalamus can generate localized visual percepts in alert monkeys. To assess electrically generated percepts, an eye-movement task was used with targets presented on a computer screen (optically) or through microstimulation of the lateral geniculate nucleus (electrically). Saccades (fast, direct eye movements) made to electrical targets were comparable to saccades made to optical targets. Gaze locations for electrical targets were well predicted by measured visual response maps of cells at the electrode tips. With two electrodes, two distinct targets could be independently created. A sequential saccade task verified that electrical targets were processed not in motor coordinates, but in visual spatial coordinates. Microstimulation produced predictable visual percepts, showing that this technique may be useful for a visual prosthesis.



1992 ◽  
Vol 9 (5) ◽  
pp. 515-525 ◽  
Author(s):  
E. Hartveit ◽  
P. Heggelund

AbstractThe response vs. contrast characteristics of different cell classes in the dorsal lateral geniculate nucleus (LGN) were compared. The luminance of a stationary flashing light spot was varied stepwise while the background luminance was constant. Lagged X cells had lower slope of the response vs. contrast curve (contrast gain), and they reached the midpoint of the response range over which the cells' response varied (dynamic response range) at higher contrasts than nonlagged X cells. These results indicated that nonlagged cells are well suited for detection of small contrasts, whereas lagged cells may discriminate between contrasts over a larger range. The contrast gain and the contrast corresponding to the midpoint of the dynamic response range were similar for X and Y cells. The latency to onset and to half-rise of the visual response decreased with increasing contrast, most pronounced for lagged cells. Even at the highest contrasts, the latency of lagged cells remained longer than for nonlagged cells. For many lagged cells, the latency to half-fall decreased with increasing contrast. It is shown that the differences in the response vs. contrast characteristics between lagged and nonlagged X cells in the cat are similar to the differences between the parvocellular and magnocellular neurones in the monkey.



2005 ◽  
Vol 93 (6) ◽  
pp. 3224-3247 ◽  
Author(s):  
Matthew S. Grubb ◽  
Ian D. Thompson

Thalamic relay cells fire action potentials in two modes: burst and tonic. Previous studies in cats have shown that these two modes are associated with significant differences in the visual information carried by spikes in the dorsal lateral geniculate nucleus (dLGN). Here we describe the visual response properties of burst and tonic firing in the mouse dLGN. Extracellular recordings of activity in single geniculate cells were performed under halothane and nitrous oxide anesthesia in vivo. After confirming that the criteria used to isolate burst spikes from these recordings identify firing events with properties described for burst firing in other species and preparations, we show that burst firing in the mouse dLGN occurs during visual stimulation. We then compare burst and tonic firing across a wide range of visual response characteristics. While the two firing modes do not differ with respect to spatial summation or spatial frequency tuning, they show significant differences in the temporal domain. Burst spikes are phase advanced relative to their tonic counterparts. Burst firing is also more rectified, possesses sharper temporal frequency tuning, and prefers lower temporal frequencies than tonic firing. In addition, contrast-response curves are more step-like for burst responses. Finally, we present analyses that describe the stimulus detection abilities and spike timing reliability of burst and tonic firing.



2015 ◽  
Vol 112 (42) ◽  
pp. E5734-E5743 ◽  
Author(s):  
Riccardo Storchi ◽  
Nina Milosavljevic ◽  
Cyril G. Eleftheriou ◽  
Franck P. Martial ◽  
Patrycja Orlowska-Feuer ◽  
...  

Twice a day, at dawn and dusk, we experience gradual but very high amplitude changes in background light intensity (irradiance). Although we perceive the associated change in environmental brightness, the representation of such very slow alterations in irradiance by the early visual system has been little studied. Here, we addressed this deficit by recording electrophysiological activity in the mouse dorsal lateral geniculate nucleus under exposure to a simulated dawn. As irradiance increased we found a widespread enhancement in baseline firing that extended to units with ON as well as OFF responses to fast luminance increments. This change in baseline firing was equally apparent when the slow irradiance ramp appeared alone or when a variety of higher-frequency artificial or natural visual stimuli were superimposed upon it. Using a combination of conventional knockout, chemogenetic, and receptor-silent substitution manipulations, we continued to show that, over higher irradiances, this increase in firing originates with inner-retinal melanopsin photoreception. At the single-unit level, irradiance-dependent increases in baseline firing were strongly correlated with improvements in the amplitude of responses to higher-frequency visual stimuli. This in turn results in an up to threefold increase in single-trial reliability of fast visual responses. In this way, our data indicate that melanopsin drives a generalized increase in dorsal lateral geniculate nucleus excitability as dawn progresses that both conveys information about changing background light intensity and increases the signal:noise for fast visual responses.



1993 ◽  
Vol 10 (2) ◽  
pp. 325-339 ◽  
Author(s):  
E. Hartveit ◽  
P. Heggelund

AbstractThis study examined the influence of the pontomesencephalic peribrachial region (PBR) on the visual response properties of cells in the dorsal lateral geniculate nucleus (LGN). The response of single cells to a stationary flashing light spot was recorded with accompanying electrical stimulation of the PBR. The major objectives were to compare the effects of PBR stimulation on lagged and nonlagged cells, to examine how the visual response pattern of lagged cells could be modified by PBR stimulation and to examine whether the physiological criteria used to classify lagged and nonlagged cells are applicable during increased PBR input to the LGN. During PBR stimulation, the visual response was enhanced to a similar degree for lagged and nonlagged cells and the latency to half-rise of the visual response was reduced, particularly for the lagged X cells. The latency to half-fall of the visual response of lagged cells was not changed by PBR stimulation. Accordingly, the division of LGN cells into lagged and nonlagged cells based on visual response latencies was maintained during PBR stimulation. The initial suppression that a visual stimulus evokes in lagged cells was resistant to the effects of PBR stimulation. For the lagged cells, the largest response increase occurred for the initial part of the visual response. For the nonlagged cells, the largest increase occurred for the tonic part of the response. The results support the hypothesis that the differences in temporal response properties between lagged and nonlagged cells belong to the basic distinctions between these cell classes.



2003 ◽  
Vol 90 (6) ◽  
pp. 3594-3607 ◽  
Author(s):  
Matthew S. Grubb ◽  
Ian D. Thompson

We present a quantitative analysis of the visual response properties of single neurons in the dorsal lateral geniculate nucleus (dLGN) of wild-type C57Bl/6J mice. Extracellular recordings were made from single dLGN cells in mice under halothane and nitrous oxide anesthesia. After mapping the receptive fields (RFs) of these cells using reverse correlation of responses to flashed square stimuli, we used sinusoidal gratings to describe their linearity of spatial summation, spatial frequency tuning, temporal frequency tuning, and contrast response characteristics. All cells in our sample had RFs dominated by a single, roughly circular “center” mechanism that responded to either increases (on-center) or decreases (off-center) in stimulus luminance, and almost all cells passed a modified null test for linearity of spatial summation. A difference of Gaussians model was used to relate spatial frequency tuning to the spatial properties of cells' RFs, revealing that mouse dLGN cells have large RFs (center diameter approximately 11°) and correspondingly poor spatial resolution (approximately 0.2c/°). Temporally, most cells in the mouse dLGN respond best to stimuli of approximately 4 Hz. We looked for evidence of parallel processing in the mouse dLGN and found it only in a functional difference between on- and off-center cells: on-center cells were more sensitive to stimulus contrast than their off-center neighbors.



Sign in / Sign up

Export Citation Format

Share Document